参考文献

您当前的位置:学术堂 > 参考文献 >

沙糖桔论文参考文献(范例80个)

来源:学术堂 作者:师老师
发布于:2020-11-17 共5471字

    我们在撰写学术论文时,标注参考文献既有利于自己观点的证明和表述,又有利于被引参考文献作者及其刊发期刊影响因子的提高。而沙糖桔论文写作中如果没有着录参考文献,就会使人怀疑作者的劳动成果的真实性,难免有剽窃他人的嫌疑。因此本文整理了一些“沙糖桔论文参考文献范例”,以供参考。
 

沙糖桔论文参考文献
 

    沙糖桔论文参考文献范例一:

    [1]黄丽华.砂糖桔营养成分分析[J].食品研究与开发,2007, 28 (1) :152-154.
    [2]丁晓波,张华,刘世尧,等.柑橘果品营养学研究现状[J].园艺学报,2012, 39 (9) :1687-1702
    [3]李本波.十月金果沙糖桔[J].中国果菜,2014, 34 (11) :6-11.
    [4]黄晓雁.论梧州市沙糖桔产业化现状、问题及发展思路[J].中国果业信息,2012, 29 (5) :10-11.
    [5]郑瑞婷,刘长海,陈正东.沙糖桔果酒酿造工艺研究[J].中国酿造,2010, 29 (2) :170-173.
    [6]林捷,万子玲,郑茵,等.复合澄清剂对砂糖橘果酒风味的影响[J].食品研究与开发,2012, 33 (2) :51-54.
    [7]布坎南R E, 吉本斯N E.伯杰细菌鉴定手册[M].第8版.北京:科学出版社, 1984:35-47.
    [8] 魏景超.真菌鉴定手册[M].上海:上海科学技术出版社, 2009:21-56.
    [9]冀辉.耶尔森强毒力岛 (HPI) 在禽大肠杆菌中水平转移及功能评价[D].合肥:安徽农业大学, 2013.
    [10]李梓番.环境优势微生物对高放废物处置材料钢和水泥砂浆腐蚀影响基础研究[D].绵阳:西南科技大学, 2015.
    [11]黄晓雁,黎展文,戴国权,等砂糖橘优质高产栽培技术[J].果农之友,2016,166(03):24-25.
    [12]莫振华.沙糖桔栽培管理技术要点[J].农技服务,2019(6):72.
    [13]杨永东.促进沙糖桔果实早熟栽培具体技术分析[J].农家参谋,2019(11):81-82.
    [14]黄德仁.沙糖桔优质高产栽培技术[J].农业与技术, 2017, 37 (10) :522-523.
    [15]熊玉莉.水肥一体化技术在沙糖桔栽培上的应用[J].湖北植保, 2018 (2) :64-65.
    [16] 苏家广.沙糖桔高产优质栽培技术[J].新农村, 2017, 14 (22) :233-234.
    [17]段平.坡地沙糖桔的种植技术要点[J].农业与技术, 2017 (10) .
    [·8]黄德仁.沙糖桔优质高产栽培技术[J].农业与技术, 2017 (10) .
    [19]施洪.德宏州沙糖桔栽培技术[J].德宏师范高等专科学校学报, 2016 (02) .
    [20]黄珍丽.沙糖桔病虫发生情况及生态控制措施[J].农业与技术, 2016 (22) .
    [21]刘杰风, 周天, 王颖, 等.小白菜内生菌的分离及菌核菌拮抗菌的筛选[J].湖北农业科学, 2011, 50 (13) :2676-2679.
    [22]胡秀荣, 黄振东, 蒲占, 等.柑橘内生菌的研究进展[J].浙江柑橘, 2012 (1) :36-38.
    [23]冉国华, 张志元.柑桔内生拮抗细菌的发酵液对油菜菌核病的田间防治效果[J].长沙大学学报, 2004, 18 (4) :26-28.
    [24]袁红旭, 陈勇明, 何财能, 等.拮抗炭疽病的柑橘内生细菌的分离与筛选[J].果树学报, 2005, 22 (5) :510-513.
    [25]邓崇岭, 莫元妹, 唐艳等.沙糖桔树冠覆膜栽培技术研究应用[J].中国南方果树, 2016, (06) :135.
    [26]莫振茂.非洲菊水肥一体化栽培技术[J].湖北植保, 2015, (04) :57-58.
    [27]陈爱军, 覃炳树, 易显荣等.桂林市葡萄简便水肥一体化应用及主要配套技术[J].南方园艺, 2015, 26 (2) :24-25.
    [28]张丽霞, 余新春, 郑成丽.浅析水溶肥料在水肥一体化中的重要性[J].现代农村科技, 2013, (17) :41.
    [29]甘廉生, 唐小浪, 周碧容, 等.广东柑桔志[M].广州:广东科技出版社, 2013:93-97
    [30]叶自行, 曾泰, 许建楷, 等.无籽沙糖桔 (十月桔) 的选育[J].果树学报, 2006, 23 (1) :149-150
    [31]唐士勇.Logistic方程在果树半致死温度测定中的应用[J].北方果树, 1993 (4) :23-24
    [32]曾慧珍, 许庆胜, 徐建生, 等.植物缺素症的识别及矫正[J].现代园艺, 2013 (17) :59.
    [33]陆景陵.植物营养学[M].北京:中国农业大学出版社, 2003.
    [34]周碧容, 谭克成, 陈云辉, 等.柑桔新品种‘粤农晚桔’[J].园艺学报, 2013, 40 (5) :997-998
    [35]周世玉.林果树缺素症的识别与防治[J].价值工程, 2010 (15) :163.
    [36]周碧容, 易干军, 周成安, 等.柑桔新品种‘金葵蜜桔’[J].园艺学报, 2011, 38 (8) :1607-1608
    [37]杨家驹.电导法测定柑桔耐寒性的灵敏度和精确性的检验[J].南京农学院学报, 1980 (1) :87-95
    [38]刘祖棋, 周碧英, 王元裕, 等.电导法鉴定柑桔耐寒性的试验[J].南京农学院学报, 1981 (2) :32-37
    [39]区胜样, 马湘涛.电导法在柑桔抗寒性测定上的应用[J].华中农学院学报, 1981 (3) :65-70
    [40]朱根海, 刘祖棋, 朱培仁.应用Logistic方程确定植物组织低温半致死温度的研究[J].南京农业大学学报, 1986 (3) :11-16
    [41]陈竹生, 计玉, 聂华堂, 等.用电导法配合Logistic方程测定若干甜橙品种的抗寒性[J].中国柑桔, 1991, 20 (4) :11-13
    [42]罗正荣, 舒晓东, 李春初, 等.柑桔抗冻性鉴定技术规范研究[J].果树科学, 1992, 9 (4) :203-207
    [43]罗正荣, 章文才.应用Logistic方程测定柑桔抗冻力的探讨[J].果树科学, 1994, 11 (2) :100-102
    [44]伊华林, 邹志远, 奋忠芳, 等.鄂柑1号抗寒力测定与Logistic方程的应用[J].湖北农业科学, 1996 (3) :46-47, 49
    [45]邓伯勋, 曾凤.5个柑桔体细胞杂种的抗寒性研究[J].林业科学, 2011, 37 (6) :20-25
 

    沙糖桔论文参考文献范例二:

    [1]SHARMA B, JOSHI D, YADAV P K, et al.Role of ubiquitin-mediated degradation system in plant biology[J].Front Plant Sci, 2016, 7:806.doi:10.3389/fpls.2016.00806.
    [2]MORREALE F E, WALDEN H.Types of ubiquitin ligases[J].Cell, 2016, 165 (1) :248-248.e1.doi:10.1016/j.cell.2016.03.003.
    [3]ISONO E, NAGEL M K.Deubiquitylating enzymes and their emerging role in plant biology[J].Front Plant Sci, 2014, 5:56.doi:10.3389/fpls.2014.00056.
    [4]VIERSTRA R D.The ubiquitin-26S proteasome system at the nexus of plant biology[J].Nat Rev Mol Cell Biol, 2009, 10 (6) :385-397.doi:10.1038/nrm2688.
    [5]MOON J, PARRY G, ESTELLE M.The ubiquitin-proteasome pathway and plant development[J].Plant Cell, 2004, 16 (12) :3181-3195.doi:10.1105/tpc.104.161220.
    [6]YU F F, WU Y R, XIE Q.Ubiquitin-proteasome system in ABAsignaling:From perception to action[J].Mol Plant, 2016, 9 (1) :21-33.doi:10.1016/j.molp.2015.09.015.
    [7]KELLEY D R.E3 ubiquitin ligases:Key regulators of hormone signaling in plants[J].Mol Cell Proteom, 2018, 17 (6) :1047-1054.doi:10.1074/mcp.MR117.000476.
    [8]CUI X, LU F L, LI Y, et al.Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis[J].Plant Physiol, 2013, 162 (2) :897-906.doi:10.1104/pp.112.213009.
    [9]FANG H M, MENG Q L, XU J W, et al.Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice[J].Plant Mol Biol, 2015, 87 (4/5) :441-458.doi:10.1007/s11103-015-0294-1.
    [10]BAHMANI R, KIM D, LEE B D, et al.Over-expression of tobacco UBC1 encoding a ubiquitin-conjugating enzyme increases cadmium tolerance by activating the 20S/26S proteasome and by decreasing Cd accumulation and oxidative stress in tobacco (Nicotiana tabacum) [J].Plant Mol Biol, 2017, 94 (4/5) :433-451.doi:10.1007/s11103-017-0616-6.
    [11]HE Q, McLELLAN H, BOEVINK P C, et al.U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans[J].J Exp Bot, 2015, 66 (11) :3189-3199.doi:10.1093/jxb/erv128.
    [12]MILLYARD L, LEE J, ZHANG C J, et al.The ubiquitin conjugating enzyme, TaU4 regulates wheat defence against the phytopathogen Zymoseptoria tritici[J].Sci Rep, 2016, 6:35683.
    [13]XU X S, PAIK I, ZHU L, et al.Phytochrome interacting factor1enhances the E3 ligase activity of constitutive photomorphogenic1 to synergistically repress photomorphogenesis in Arabidopsis[J].Plant Cell, 2014, 26 (5) :1992-2006.doi:10.1105/tpc.114.125591.
    [14]CHANG L C, GUO C L, LIN Y S, et al.Pollen-specific SKP1-like proteins are components of functional SCF complexes and essential for lily pollen tube elongation[J].Plant Cell Physiol, 2009, 50 (8) :1558-1572.doi:10.1093/pcp/pcp100.
    [15]DOUCET J, LEE H K, GORING D R.Pollen acceptance or rejection:A tale of two pathways[J].Trends Plant Sci, 2016, 21 (12) :1058-1067.doi:10.1016/j.tplants.2016.09.004.
    [16]SUN P L, LI S, LU D H, et al.Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation[J].Plant J, 2015, 83 (2) :213-223.doi:10.1111/tpj.12880.
    [17]STONE S L, ANDERSON E M, MULLEN R T, et al.ARC1 is an E3ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen[J].Plant Cell, 2003, 15 (4) :885-898.doi:10.1105/tpc.009845.
    [18]QIAO H, WANG H Y, ZHAO L, et al.The F-box protein Ah SLF-S2physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum[J].Plant Cell, 2004, 16 (3) :582-595.doi:10.1105/tpc.017673.
    [19]ZHANG N, LIU J H, JIA C H, et al.The interaction of banana MADS-box protein MuMADS1 and ubiquitin-activating enzyme E-MuUBA in post-harvest banana fruit[J].Chin J Trop Crops, 2014, 35 (2) :307-312.doi:10.3969/j.issn.1000-2561.2014.02.016.
    [20]JUE D W, SANG X L, SHU B, et al.Expression pattern analysis of an ubiquitin-activating enzyme gene CpUBA1 in Carica papaya[J].Guangdong Agric Sci, 2017, 44 (11) :20-25.doi:10.16768/j.issn.1004-874X.2017.11.004.
    [21]LI X, ZHANG S S, MA J X, et al.TaUBA, a UBA domain-containing protein in wheat (Triticum aestivum L.) , is a negative regulator of salt and drought stress response in transgenic Arabidopsis[J].Plant Cell Rep, 2015, 34 (5) :755-766.doi:10.1007/s00299-015-1739-3.
    [22]YE Z X, ZENG T, XU J K, et al.Wuzishatangju, a new mandarin cultivar[J].J Fruit Sci, 2006, 23 (1) :149-150.doi:10.3969/j.issn.1009-9980.2006.01.037.叶自行, 曾泰, 许建楷, 等.无子沙糖橘 (十月橘) 的选育[J].果树学报, 2006, 23 (1) :149-150.doi:10.3969/j.issn.1009-9980.2006.01.037.
    [23]YE W J, QIN Y H, YE Z X, et al.Seedless mechanism of a new mandarin cultivar‘Wuzishatangju’ (Citrus reticulata Blanco) [J].Plant Sci, 2009, 177 (1) :19-27.doi:10.1016/j.plantsci.2009.03.005.
    [24]MIAO H X, QIN Y H, YE Z X, et al.Molecular characterization and expression analysis of ubiquitin-activating enzyme E1 gene in Citrus reticulata[J].Gene, 2013, 513 (2) :249-259.doi:10.1016/j.gene.2012.10.056.
    [25]QIN Y H, HU G B.Experimental Guidance of Biotechnology for Horticultural Plants[M].2nd ed.Beijing:Chinese Agricultural Press, 2016:51-53, 82-84.秦永华, 胡桂兵.园艺植物生物技术实验指导[M].第2版.北京:中国农业出版社, 2016:51-53, 82-84.
    [26]MIAO H X, QIN Y H, DA SILVA J A T, et al.Cloning and expression analysis of S-RNase homologous gene in Citrus reticulata Blanco cv.Wuzishatangju[J].Plant Sci, 2011, 180 (2) :358-367.doi:10.1016/j.plantsci.2010.10.012.
    [27]LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J].Methods, 2001, 25 (4) :402-408.doi:10.1006/meth.2001.1262.
    [28]TAO S T, ZHANG S L, CHEN D X, et al.Study on characteristics of in situ pollen germination and tube growth of Prunus mume[J].J Fruit Sci, 2004, 21 (4) :338-340.doi:10.3969/j.issn.1009-9980.2004.04.014.
    [29]SHI G J, HOU X L.Measurement of self-incompatible by fluoroscope observation in non-heading Chinese cabbage[J].J Wuhan Bot Res, 2004, 22 (3) :197-200.doi:10.3969/j.issn.2095-0837.
    [30]SMALLE J, VIERSTRA R D.The ubiquitin 26S proteasome proteolytic pathway[J].Annu Rev Plant Biol, 2004, 55:555-590.doi:10.1146/annurev.arplant.55.031903.141801.
    [31]HUA Z H, VIERSTRA R D.The cullin-RING ubiquitin-protein ligases[J].Annu Rev Plant Biol, 2011, 62:299-334.doi:10.1146/annurevarplant-042809-112256.
    [32]KUBO K I, ENTANI T, TAKARA A, et al.Collaborative non-self recognition system in S-RNase-based self-incompatibility[J].Science, 2010, 330 (6005) :796-799.doi:10.1126/science.1195243.
    [33]INDRIOLO E, GORING D R.A conserved role for the ARC1 E3ligase in Brassicaceae self-incompatibility[J].Front Plant Sci, 2014, 5:181.doi:10.3389/fpls.2014.00181.

相关内容推荐
相关标签:
返回:参考文献