摘 要: 人工智能是当今最具战略性和颠覆性的技术。光电技术与人工智能技术发展呈交叉融合、集成微型、高效低耗、开源开放、催变生新等特点。光电技术的集成化、微型化、低功耗化、多功能化和智能化发展,有助于构建人工智能生态体系,更好地为智能世界赋能。
关键词: 光电技术; 人工智能; 应用; 趋势预见;
Abstract: Artificial intelligence is the most strategic and disruptive technology today.The development of photoelectric technology and artificial intelligence technology has the characters of cross fusion, miniature integration, high efficiency, low consumption, open source and innovation.The integration, miniaturization, low power consumption, multi-function and intelligent development of photoelectric technology are conducived to the construction of artificial intelligence ecosystem and enable the intelligent world.
Keyword: Photoelectric technology; Artificial intelligence; Application; Trend forecast;
1、 概述
人工智能是当今最具战略性和颠覆性的技术,其以强大的赋能性驱动着新一轮科技革命和产业变革,深刻地影响经济发展、社会进步和国际政治格局构建[1]。
当前,人工智能着重解决机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、无人驾驶等)“六会”问题[2]。光电技术在解决这“六会”的人工智能关键技术中应用十分广泛。
2 、光电技术在人工智能领域的应用
光电技术在人工智能应用实践层面主要解决“会看”“会思考”“会行动”等问题,包括以下方面。
2.1、 光子芯片
智能芯片是人工智能最核心的技术,相当于人工智能的“大脑”。人工智能基于对海量数据收集、处理、选择、交换、整合和分析。在此过程中,机器效能的消耗随着数据量激增而“与日俱增”,传统计算方式和硬件(传统芯片)显得“力不从心”,高速低耗的光子芯片应运而生。
光子芯片依托硅基光子集成技术,让光提供算力。光子芯片运算速度快、低延迟、抗电磁干扰、低能耗,计算能力为传统芯片的一千倍,但功耗仅为其百分之一。因而广泛应用于大数据、人脸识别、安防监控、AI金融、AI医疗、自动驾驶、无人机等所有低能耗应用领域。
2015年,麻省理工学院研究者研制出一种可以与传统的计算机结合进行深度学习的新型光学计算芯片(3]。2017年,普林斯顿大学研究者研制出第一枚光子神经形态芯片[4],其依靠入射光线的明暗实现运算,这个过程不需电力运作,不损耗能源。德国研究人员在毫米级光子芯片上搭建了全光神经网络,且网络内不存在光电转换[5]。清华、北大、北交大等高校博士组成的研究团队成功研发第一枚国产光子人工智能芯片[6]。中科院研发的云端人工智能芯片理论峰值速度,已达每秒128万亿次定点运算[7]。
2.2、 机器视觉与计算机视觉
机器视觉是应用价值最高的人工智能技术,它使机器“开眼看世界”,实现“从识人知物到辨识万物”。机器视觉就是用机器代替人眼进行测量和判断,它综合了模拟、数字电子、计算机、图像处理、传感器、机械工程、光源照明、光学成像等跨学科前沿技术。机器视觉具有准确性、客观性、稳定性等特点,在安防及交通摄像头、无人驾驶、金融、医疗等领域广泛应用。
计算机视觉就是利用计算机和其辅助设备模拟人的视觉功能识别、跟踪和测量目标并进行图形处理。美国麻省理工学院研究者将人工智能和光学技术结合研发的“密集对象网络(DON]”系统,可以使机器人更好地理解和操纵物体,甚至是它们从未见过的随机物体[8]。
2.3、 光电传感器
传感器是人工智能获取信息的重要器件,是人工智能技术的硬件基础。传感器技术是人工智能与万物互联的必备条件,传感器是人工智能的核心部件,它如同人类的五官,采集和转换外界信息。光电传感器一般由光源、光学通路和光电器件组成,其功能就是将光信号转换为电信号。
光电传感器体积小、重量轻、易升级,传输没有测量误差,应用领域十分广泛,常见的如智能停车系统、智能水表、智能交通、智能家居、可穿戴设备等。当前研究的热点是智能光电传感器,它集成了人工神经网、人工智能、信息处理等技术,较传统传感器反应速度更快、精度更高、重量更轻、能耗更低,成为人工智能的关键因素[9]。
2.4、 光储存
光储存是人工智能的重要基石。人工智能应用必须依靠海量数据,爆炸式增长的数据,对承载数据的基础设施性能及能耗等提出了更高的要求,依靠磁硬盘驱动器的传统存储难以满足之一需求,新一代光存储技术由此“大显神通”。
光存储的原理就是利用光子与物质的作用,将图像、语言、文字以及相关数据等各种信息记录下来,应用时再读出。光学存储芯片不发热,硬盘设备功耗低。当前,大数据和云存储技术已经支撑人工智能在安防领域应用。全息光存储具有超大存储容量、超高的存储密度和越快的存取速度,成为研发重点。贝尔实验室的衍生公司Inphase公司已经在这一领域取得突破。
3、 光电技术在人工智能领域应用趋势预见
进入人工智能时代,现代科学技术也进入了爆发期。光电技术的智能化、集成化、网络化、多功能化趋势日益显现,在人工智能领域应用呈现出如下特点。
3.1、 交叉引领,融合应用
人工智能领域与光电技术交叉渗透、融合发展是基本趋势。诸多人工智能需要解决的问题,也正在是光电技术的发展需要解决的问题。
美国斯坦福大学研究直接在光学芯片上训练人工神经网络,让光学电路实现基于电子的人工神经网络的关键功能,从而实现成本更低、速度更快、能耗更低地执行任务[10]。
科学家正在研究应用机器学习改善传统的光学和光电技术。通过将机器学习、神经网络引入视觉技术中形成人工智能视觉技术,显着提升数据处理量和速度。医学成像引入人工智能通过胸部X光检查诊断肺炎,精度比人类放射科医生更好。我国科学家发明的基于激光成像技术和人工智能的监控系统,可在45公里远处实施目标识别[11]。
3.2、 集成微型,高效低耗
诸多技术集成是人工智能技术的显着特点,设备或器件微型化、多功能化、集成化和低能耗是人工智能领域光电技术发展趋势。
光芯片集成化和微型化已经实现突破。IBM研发整合光路到硅基板上,实现“口袋一样小的装置能拥有自动驾驶车一样的运算能力”[12]。中国信科研制的100G硅光收发芯片,在不到30平方毫米的硅芯片集成近60个光器件[13]。
光电传感器的方向为多功能化、终端应用集成化。随着精密加工、微电子、集成电路等技术的发展及新材料的应用,光电传感器中的一些器件尺寸已走向微米级甚至纳米级。半导体蒸镀技术、光刻技术、精密微加工及组装技术等日益突破,同一基板整合诸多敏感器件不再是难题。可以预见,微型化、多功能化、集成化和低能耗、智能化的光电传感器将逐步取代传统的传感器。
3.3、 智能驱动,开源开放
智能化、自动化和数据化、网络化是现代科学技术的发展趋势。
苏黎世联邦理工学院和苏黎世大学研发的具有“机器学习功能的光声扫描仪,可以从“稀疏数据”中生成高质量图像。劳伦斯·伯克利国家实验室和加利福尼亚大学伯克利分校研究者使用机器学习和神经网络提高同步加速器光束性能的稳定性[14]。
开源开放已成人工智能领域的发展趋势。当前研发方向是实现开源深度学习平台与人工智能芯片结合,构筑“芯片+操作系统”生态。光学芯片、智能视觉等必将顺应这一趋势,在构建人工智能生态系统过程中,实现自身新突破新发展。
3.4、 迭代升级,催变生新
人工智能时代也是技术大爆发的时代,包括人工智能技术在内的诸多技术持续迭代升级,不断催变生新。
传统光学与现代计算机系统相结合产生智能光学,在天文军事、医学等领域都有着广泛的应用[15]。
光速深度学习正在成为现实。加州大学洛杉矶分校研究使用3D打印生成“全光学”人工神经网络,可以分析大量数据并以光速识别目标,开辟了光速深度学习新境界[16]。
新一代智能光电传感器将具有分析、判断、自适应、自学习的功能。近年研发的基于双目视觉技术的3D感测方案,具有低功耗、高灵敏度特点,在机器人和VR等领域广泛应用[17]。
荷兰埃因霍芬理工大学光子集成研究所开发的“全光开关”,数据写入比现有技术快成百上千倍,还不需耗费能量[18]。美国麻省理工学院研发的“密集对象网络(DON)”系统可以帮助机器人在杂乱的环境中拾取特定物体,理解物体的方向系统[19]。
4 、结论
人工智能的发展并非一蹴而就,也非某一两项技术支撑,需要多项技术共同发力。光电技术在人工智能领域应用占据重要席位,两者相互促进、相互交融,不断推陈出新,迭代升级。随着光电技术在集成化、微型化、低功耗化、多功能化和智能化等方面不断取得突破和进展,将更好的助力人工智能的未来。
参考文献
[1]佘惠敏.核心关键技术薄弱,人工智能发展之路还很长[N].经济日报,2019-12-10.
[2] 李宁.人工智能技术在计算机中的发展和应用[J].科技风,2018(7).
[3] Jesse Dunietz.光电计算机的出现照亮了人工智能的未来[T](李凌译),搜狐网,2017-07-06.
[4]刘霞.首枚光子神经形态芯片问世[N].科技日报,2016-11-20.
[5] 张新蕾.光学在人工智能算法的专用硬件中的作用[J].中国激光,2019(10).
[6] 解析光子芯片的优势与应用[Z],电子发烧友网,2019-01-08.
[7]李宁.人工智能技术在计算机中的发展和应用[J].科技风,2018(7).
[8] whatcan.人工智能相机:可能让无人驾驶汽车和无人机技术获得新突破[Z],搜狐网,2018-10-04。
[9]魏延斌.智能传感器技术研究[J].交通科技与经济,2006(6).
[10] 郭婷.斯坦福证明光学芯片上训练人工神经网络[Z],电子发烧友网,2018-07-29.
[11] 我国科学家推出基于激光成像技术和人工智能的监控摄像头[J].光行天下,2019-05-10.
[12] 佚名.光学芯片成为人工智能新方向[Z],中国机电网,2017-08-19.
[13] 李舒.中国电子科技集团研制成功多核DSP芯片[J].新华网,2016-12-27.
[14] 佚名.人工智能提高了光声成像的质量和可用性[Z].中国光学期刊网,2019-11-12.
[15]梁宇宏.浅析智能光学发展现状[J].科技资讯,2017(31).
[16] 佚名.美大学用3D打印“全光学深度神经网络”运算速度接近光速[Z],搜狐网,2018-09-29。
[17] 喻扬.基于结构光和双目视觉的工件3D重建与测量[D],2018(4).
[18] 佚名.新一代光子存储器:快速且高能效[Z].腾讯网,2019-01-15.
[19] 佚名.人工智能和光学技术结合在一起生产出挑剔的机器人[N].机器人库早报,2018-12-09.
激光诱导击穿光谱技术是近年来运用的较为新型的技术,将其合理、有效的运用到录井工程当中,有助于帮助对物质元素的明确。据了解,激光诱导等离子光谱技术是此项技术的又一个名称。...
紫铜具有高热导率和大膨胀系数。紫铜焊接过程中大量热被传导出去,热量难以集中,紫铜厚板传统焊接需要预热,存在焊接过程中易出现气孔、热裂纹、焊后残余变形大等问题。长期以来,紫铜的焊接方法主要是气焊、钎焊、手工电弧焊、TIG焊、电子束焊等[1].气焊...
光学系统具有一定的弊端,在动静态方面误差较大,自适应光学技术的研制和应用有效的解决了这一问题,大大优化了系统工作性能。在科学技术不断发展的过程中,单元技术及光学技术日益完善,应用微光学技术和微电子研制的单元器件得到了广泛的应用,大大降低了...
一直以来,录井工程中的岩性识别都具有复杂程度较高的特点,这给录井技术人员增加了工作难度。为了提高岩性识别的工作效果,我国相关人士已经将所有的精力和时间都放在了录井技术的分析上面,以期可以为录井工程质量的提升提供保障。...
随着现代科技的不断更新与物质生活的高度发达,环境污染物的排放量日益增多,人们在享受着丰富物质生活的同时,也受到了环境污染带来的冲击,例如酸雨的侵害,雾霾天气的影响,全球变暖导致的海平面上升等问题。传统的检测方法(如化学法),由于用时长、花...
为了实现固体激光电源的小型化、集成化,要进行固体激光电源的混合集成化设计和应用,并引入表面安装技术(SMT),在封装技术的支撑下将原有的分立电路改造为混合集成电路,从而实现固体激光电源的小型化、集成化应用。...
近年来,随着激光设备的柔性化、智能化、大功率激光器件以及相配套制造系统的发展,使得激光加工技术应用于输电铁塔制造中成为可能。...
光学相干层析成像技术(OpticalCoherenceTomo-graphy,OCT)是一种非侵入、非接触和无损伤的光学成像技术,它将低相干干涉仪与共焦扫描显微术结合在一起,利用高灵敏度的外差探测技术,能够对生物组织或其他散射介质内部的微观结构进行高分辨率的横断面层...
激光再制造技术是一门符合国家可持续发展战略和循环经济的一门绿色技术,也是目前国家大力推广应用的一门高新技术。我国每年由于零部件腐蚀、磨损等诸多原因而导致设备报废、停产,进而产生的相关损失高达千亿元,由此可见激光再造技术在其中的重要地位和作用...
当今社会,经济高速发展,人们对美好生活的需求不断提高,为了追求更好的生活品质,越来越多高端、智能的电器走入了人们日常生活中,成为我们生活起居必不可少的一部分。...