数学建模具体的说就是将某一领域的某个实际问题经过抽象、简化、明确变量和参数依据某种"规律"建立变量和参数的明确关系即数学模型,然后求解该问题,并对结果进行解释和验证。但数学建模的定量评估和预测又和实际会有或多或少的误差。
以2010年上海世博会为例,在固定经济发展产业结构改进和优化、GDP增长及人民生活水平的改善的因素的条件下,可以通过世博会单独对城市旅游业促进作用的定量分析评估研究世博会对上海旅游业的影响。在世博会筹备阶段及举办阶段除了03年受SARS影响外,上海市接待海外游客数和国际旅游外汇收入较承办前的游客数和旅游收入都有较大幅度的提高。后世博阶段,可利用MATLAB得出未来5年接待接待入境游客数评价最优的模型参数为:a=0.41331359425,=b2.0426e+002,应用灰色系统方法中的GM(1,1)模型[1],根据表1中的数据对未来5年上海国内旅游人数和收入进行建模预测(见表2)。
经过三次对残差数列[2]进行建模分析后,得出接待国内游客数评价模型的最优参数为:a=0.063793,b=7988.2181.由未来5年接待入境游客人数的预测值,=x(t+1)619exp(0.41331359)+560.998580,得出旅游外汇收入评价最优的模型参数为:a=0.2654938599,b=b=1.700928,未来5年上海旅游外汇收入的预测值x(t+1)=?36.410140exp(0.045034)+37.769674,国内游客人数的预测=x(t+1)8765.93exp(0.022922)?3483.959894,得出上海在国内旅游收入评价模型的最优参数为:a=?0.27354,b=17.077658,未来5年国内旅游收入的预测值=x(t+1)1612.32011exp(0.27354)?1611.1.
世博会对旅游业产生积极作用的同时,游人的大幅增加也会使当地的接待能力和环境问题以及旅游企业的管理水平,服务人员的服务意识和水平等等方面都面临挑战。数学建模的预测有利于政府科学合理地规划上海旅游业投资与建设。
预测人数的误差可见灰色预测模型GM(1,1)虽可以应用于各种类似预测问题中,但没有考虑各个因素之间的联系,不适用于中长期模型的预测。要使相对误差小,就要采取分段预测方法,例如将5年的时间分成五个阶段,分别对每个阶段再进行更细化的具体分析和预测。而且世博会对旅游业的影响因素较多,一个模型的建立不能一一进行详尽的量化分析,而建模本身就是一个优化的过程,如果结论正确误差小,即可投入使用。如果误差较少可重新对问题的假设进行改进,对影响的因素进行可行性分析,以达到最优化的结果。
参考文献:
[1]段峰,杨芬。灰色预测模型的研究及应用[J].湘南学院学报,2008,4(29):17-21.
[2]刘树,王燕,胡凤阁。对灰色预测模型残差问题的探讨[J].统计与决策,2008,1:9-11.
[3]互联网研究。