三、展望
3D打印技术发展至今,取得了令人振奋的临床科研效果。3D打印技术在骨科领域的应用大致可分为3个阶段:Ⅰ术前打印1∶ 1实体模型等进行术前规划,术中导航;Ⅱ制备出个性化假体及内植物来满足不同病患的需要;Ⅲ打印组织工程支架,与细胞等复合培养,形成功能组织,从而代替、修复原有病变组织。其中,第一阶段的技术已趋于成熟,第二阶段也逐渐应用于临床研究,而第三阶段,即组织工程方面,该技术正处于起步阶段,多集中在基础研究以及动物实验。虽然3D打印技术在临床上的应用具有相当大的优势,但其尚存许多不足之处,其中最重要的就是材料的限制,目前供3D打印机使用的材料非常有限,包括石膏、金属、陶瓷、塑料等。尚无法支持临床中所应用的各种材料的打印。而胶原蛋白、羟基磷灰石等具备生物相容性和安全性的生物活性材料,尚处于实验室阶段。并且由于制造加工时对材料要求较高,3D打印设备昂贵,加上专业人员培训、数据处理与大规模批量生产问题等都阻碍了这项技术的普遍使用。另外,3D打印需要影像学、生物工程学等相关领域多方面合作,普通医院尚不具备这些条件,且许多医生对此技术的应用还不是很了解。除此之外,经此技术打印出的假体等物品的精确度和安全性、组织工程领域的活体组织遇到的道德挑战以及知识产权等相关问题也是制约其发展及应用几大因素。
虽然3D打印技术的应用存在上述各种因素的制约,但我们相信这些问题都会在将来的不断发展中得以解决。3D打印技术将更好、更全面地应用于骨科等相关领域,从而更好地服务于患者。
参考文献:
[1]Chae MP,Rozen WM,Mcmenamin PG,et al. Emergingapplications of bedside 3D printing in plastic surgery[J]. Front Surg,2015,2:25.
[2] 蔡恩泽。 3D打印颠覆传统制造业[J].中国中小企业,2012,11:46-47.
[3] 刘海涛。光固化三维打印成形材料的研究与应用[D].武汉: 华中科技大学,2009.
[4]Mcgurk M,Amis AA,Potamianos P,et al. Rapid proto-typing techniques for anatomical modelling in medicine[J]. Ann Roy Coll Surg,1997,79:169-174.
[5] 湖南华曙高科技有限责任公司制造国内首台激光3D打印机[EB / OL].[2012-12-12]. http:/ /
www.674400. com / thread-13611-1-1. html
[6]Sushant N,Suresh D,Sharma RK. Basics and applica-tions of rapid prototyping medical models[J]. RapidPrototyping J,2014,20:256-267.
[7]Dandekeri SS,Sowmya MK,Bhandary S. Stereolitho-graphic surgical template:a review[J]. J Clin DiagnRes,2013,7:2093-2095.
[8]D'Souza KM,Aras MA. Applications of computer-aideddesign / computer-assisted manufacturing technology indental implant planning[J]. J Dent Impl,2012,2:37
[9]Ursan ID,Chiu L,Pierce A. Three-dimensional drugprinting:a structured review[J]. J Am Pharm Asso,2013,53:136-144.
[10]Devillard R,Pagès E,Correa MM,et al. Cell patterningby laser-assisted bioprinting.[J]. Meth Cell Biol,2014,119:159-174.
[11]Farzadi A,Solati-Hashjin M,Asadi-Eydivand M,et al.Effect of layer thickness and printing orientation on me-chanical properties and dimensional accuracy of 3D prin-ted porous samples for bone tissue engineering[J].PLo S One,2014,9:e108252.
[12]Hurson C,Tansey A,O'Donnchadha B,et al. Rapid pro-totyping in the assessment,classification and preopera-tive planning of acetabular fractures[J]. Injury,2007,38:1158-1162.
[13]Potamianos P,Amis AA,Forester AJ,et al. Rapid proto-typing for orthopaedic surgery[J]. J Eng Med,1998,212:383-393.
[14]Guarino J,Tennyson S,Mccain G,et al. Rapid prototy-ping technology for surgeries of the pediatric spine andpelvis:benefits analysis[J]. J Pediatr Orthoped,2007,27:955-960.
[15]Shanyong Z,Xiuming L,Yuanjin X,et al. Application ofrapid prototyping for temporomandibular joint reconstruc-tion[J]. J Oral Maxil Surg,2009,69:432-438.
[16]Giovinco NA,Patrick Dunn S,Dowling L,et al. A novelcombination of printed 3-dimensional anatomic templatesand computer-assisted surgical simulation for virtual pre-operative planning in charcot foot reconstruction[J]. JFoot Ankle Surg,2012,51:387-393.
[17]Seiberras N,Frame M,Bharadwaj RG,et al. A noveltechniquefor pre-operative planning of severe acetabulardefects during revision hip arthroplasty[J]. Bone Joint JOrthop Proceed Suppl,2013,95:63.
[18]Ignacio M,Carlos Z,Eduardo M,et al. Stereolithogra-phy in spine pathology:a 2-case report[J]. SurgicalNeurology,2009,72:272-275.
[19]Brown GA,Milner B,Firoozbakhsh K. Application ofcomputer-generated stereolithography and interpositio-ning template in acetabular fractures:a report of eightcases[J]. J Orthopaed Trauma,2002,16:347-352.
[20]Bagaria V,Deshpande S,Rasalkar DD,et al. Use of rap-id prototyping and three-dimensional reconstruction mod-eling in the management of complex fractures.[J]. Eu JRadiol,2011,80:814-820.
[21] 严斌,张国栋,吴章林,等。 3D打印导航模块辅助腰椎椎弓根螺钉精确植入的实验研究[J].中国临床解剖学杂志,2014,3:252-255.
[22]Amiot L,Lang KM,Zippel H,et al. Comparative resultsbetween conventional and computer-assisted pediclescrew installation in the thoracic,lumbar,and sacralspine[J]. Spine,2000,25:606-614.
[23]Hu Y,Yuan ZS,Kepler CK,et al. Deviation analysis ofC1-C2 transarticular screw placement assisted by a novelrapid prototyping drill template:a cadaveric study.[J].J Spinal Disord Tech,2014,27:e181-186.
[24]Merc M,Igor D,Vogrin M,et al. A multi-level rapidprototyping drill guide template reduces the perforationrisk of pedicle screw placement in the lumbar and sacralspine[J]. Arch Orthop Traum Su,2013,133:893-899.
[25]Zhang YZ,Sheng L,Chen B,et al. Application of com-puter-aided design osteotomy template for treatment ofcubitus varus deformity in teenagers:a pilot study[J].J Shoulder Elb Surg,2011,20:51-56.
[26]Zhang YZ,Sheng L,Yong Y,et al. Design and primaryapplication of computer-assisted,patient-specific naviga-tional templates in metal-on-metal hip resurfacing arthro-plasty[J]. J Arthroplasty,2011,26:1083-1087.
[27] 裴延军,吴智钢。世界首例3D打印钛合金锁骨和肩胛骨植入手术在西京医院成功实施[J].中华创伤骨科杂志,2014,16:I0008.
[28]Xu N,Wei F,Liu X,et al. Reconstruction of the up-per cervical spine using a personalized 3D-printed verte-bral body in an adolescent with ewing sarcoma[J].Spine,2016,41:E50-E54.
[29]Dai KR,Yan MN,Zhu ZA,et al. Computer-aided cus-tom-made hemipelvic prosthesis used in extensive pelviclesions.[J]. J Arthroplast,2007,22:981-986.
[30]Seitz H,Rieder W,Irsen S,et al. Three-dimensionalprinting of porous ceramic scaffolds for bone tissue engi-neering[J]. J Biomed Mater Res Part B Appl Bio-mater,2005,74:782-788.
[31]Harada N,Watanabe Y,Sato K,et al. Bone regenerationin a massive rat femur defect through endochondral ossi-fication achieved with chondrogenically differentiatedMSCs in a degradable scaffold[J]. Biomaterials,2014,35:7800-7810.
[32]Wu GH,Hsu SH. Review:polymeric-based 3D printingfor tissue engineering[J]. J Med Biol Eng,2015,35:285-292.
[33]Enamul HM,Leng CY,Ian P. Extrusion based rapidprototyping technique:an advanced platform for tissueengineering scaffold fabrication[J]. Biopolymers,2012,97:83-93.
[34]Thomsen P,Malmstrm J,Emanuelsson L,et al. Elec-tron beam-melted,free-form-fabricated titanium alloy im-plants:material surface characterization and early boneresponse in rabbits[J]. J Biomed Mater Res Part BAppl Biomater,2008,90:35-44.
[35]Ciocca L,Donati D,Fantini M,et al. CAD-CAM-genera-ted hydroxyapatite scaffold to replace the mandibularcondyle in sheep:preliminary results[J]. J BiomaterAppl,2013,28:207-218.
[36]Meseguer-Olmo L,Vicente-Ortega V,Alcaraz-Bafios M,et al. In vivo behavior of Si-hydroxyapatite / polycaprolac-tone / DMB scaffolds fabricated by 3D priming[J]. J Bi-omed Mate Res A,2013,101:2038.
[37]Long P,Wei H,Ming J,et al. Bony defect repair in rab-bit using hybrid rapid prototyping polylactic-co-glycolicacid / β-tricalciumphosphate collagen I / apatite scaffoldand bone marrow mesenchymal stem cells[J]. Indian JOrthop,2013,47:388-394.
[38]Park SH,Park DS,Ji WS,et al. Scaffolds for bone tissueengineering fabricated from two different materials by therapid prototyping technique:PCL versus PLGA[J]. JMater Sci Mater Med,2012,23:2671-2678.
[39] 姚庆强。南京医科大学: 用3D打印和干细胞技术培育软骨 [EB/OL].[2014-11-28]. http:/ /www. jyb.cn / high / gdjyxw /201411 / t20141128_605638. html.
[40]Visser J,Melchels FP,Jeon JE,et al. Reinforcement ofhydrogels using three-dimensionally printed microfibres[J]. Nat Commun,2015,6:6933.
[41]Wilson WC,Boland T. Cell and organ printing 1:Pro-tein and cell printers[J]. Anat Rec Part A,2003,272:491-496.
[42] 林峰。生物3D打印技术的四个层次[J].信息技术时代,2013,6:46-49
[43] 赵占盈。基于细胞3D打印技术的肿瘤药物筛选细胞芯片研究[J].中国生物医学工程学报,2014,2:161-169.
[44]Stanton MM,Samitier J,Sánchez S. Bioprinting of 3Dhydrogels[J]. Lab Chip,2015,15:3111-3115.
[45]Kamei KI,Mashimo Y,Koyama Y,et al. 3D printing ofsoft lithography mold for rapid production of polydimeth-ylsiloxane-based microfluidic devices for cell stimulationwith concentration gradients[J]. Biomed Microdevices,2015,17:1-8.
[46]Alan FJ,Sebastian G,Jason AK,et al. Development of avalve-based cell printer for the formation of human em-bryonic stem cell spheroid aggregates[J]. Biofabrica-tion,2013,5:15.
[47] 孙伟。生物-3维打印[R].北京: 清华大学,2013.