参考文献

您当前的位置:学术堂 > 参考文献 >

博士论文参考文献

来源:学术堂 作者:韩老师致谢
发布于:2015-06-11 共1091字

  博士论文参考文献一:
  
  [1]A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(1973) 349-381.
  [2]P. Bar as, J.A. Goldstein, The heat equation with a singular potential. Trans. Amer. Math.Soc. 284(1984) 121-139.
  [3]H. Brezis, J. L. Vazquez, Blow-up solutions of some semilinear elliptic problems. Revista Mat.Univ. Complutense Madrid, 10(1997) 443-469.
  [4]K.J. Brown, The Nehari manifold for a semilinear elliptic equation involving a sublineax term.Calc. Var. 22(2005) 483-494.
  [5]H. Chen, X. Liu, Y. Wei, Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term. J.Differential Equations 252(2012) 4289-4314.
  [6]Q.M. Cheng, H.C. Yang, Bounds on eigenvalues of Dirichlet Laplacian. Math. Ann. 337(2007)159-175.
  [7]G. Hardy, J.E. Littlewood, G. Polya, Inequalities. Cambridge University Press 1934.
  [8]M. Koike, A note on hypoellipticity for degenerate elliptic operators. Publ. Res. Inst. Math.Sci. 27(1991) 995-1000.
  
  博士论文参考文献二:
  
  [1] Kirk W A. Nonexpansive Mappings in Product Spaces, Set-Valued Mappings and K-Uniform Rotundity[J]. Proc. Sympos. Pure Math., 1986, 45: 51-64.
  [2] Pilarska A B, Prus S. Banach Lattices Which Are Order Uniformly Noncreasy[J].J. Math. Anal. Appl., 2008, 342(2): 1271-1279.
  [3] Benavides T D, Gavira B. The Fixed Point Property for Multivalued Nonexpansive Mappings[J]. J. Math. Anal. Appl., 2007, 328(2): 114-122.
  [4] Garc??a-Falset J. The Fixed Point Property in Banach Spaces with the NUS-Property[J]. J. Math. Anal. Appl., 1997, 215(2): 532-542.
  [5]刘培德,侯友良.关于复Banach空间几何学[J].数学进展, 1998, 27(1): 1-20.
  [6] Birnbaum Z, Orlicz W.Uber die Verallgemeinerung des Begri?es der Zueinander Konjugierten Potenzen[J]. Studia Math., 1931, 3: 1-67.
  [7]俞鑫泰. Banach空间几何理论[M].北京:华东师范大学出版社, 1984: 3-95.
  [8] Orlicz W.Uber eine gewisse Klasse von Ra¨umen vom Typus B[J]. Bull. Intern. deAcad. Pol., 1932, A: 207-220.
  [9]吴从炘,王廷辅. Orlicz空间及其应用[M].哈尔滨:黑龙江科学技术出版社, 1983: 1-78.
  [10]吴从炘,王廷辅,陈述涛等. Orlicz空间几何学理论[M].哈尔滨:哈尔滨工业大学出版社, 1986: 1-56.


 

相关内容推荐
相关标签:
返回:参考文献