¡¡¡¡Õª Òª£º¡¡Ä¿µÄ ¹Û²ìÈ˹¤ÖÇÄÜÔÚ³¬ÉùÐĶ¯Í¼´ø½Ì¹¤×÷ÖеÄÓ¦ÓÃЧ¹û¡£·½·¨ Ñ¡È¡Ò½Ôº2018Äê12Ô—2019Äê12ÔÂÔÚÐÄÄڿƳ¬ÉùÐĶ¯Í¼ÊÒʵϰµÄ60ÃûѧÉú£¬¸ù¾ÝÊÇ·ñ½èÖúÈ˹¤ÖÇÄÜÈí¼þ¸¨Öú½Ìѧ£¬·ÖΪÑо¿×飨n=30£©ºÍ³£¹æ×飨n=30£©£¬±È½ÏÁ½×éʵϰÉúµÄÀíÂ۳ɼ¨¡¢Êµ¼ù²Ù×÷³É¼¨ÆÀ·Ö¡¢Õï¶Ïʱ¼äÒÔ¼°Åàѵʱ¼ä£¬²¢ÆÀ¹ÀÁ½×éʵϰÉú¶Ô´ø½ÌÀÏʦµÄ½ÌѧÂúÒâ¶È¡£½á¹û Ñо¿×éÀíÂ۳ɼ¨¡¢Êµ¼ù²Ù×÷³É¼¨ÆÀ·Ö¾ù¸ßÓÚ³£¹æ×飨P <0.05£©£»Õï¶Ïʱ¼äÒÔ¼°Åàѵʱ¼ä¾ùµÍÓÚ³£¹æ×飨P <0.05£©¡£Ñо¿×é½ÌѧÂúÒâ¶È£¨96.7%£©Ã÷ÏÔ¸ßÓÚ³£¹æ×é½ÌѧÂúÒâ¶È£¨73.3%£©(P<0.05)¡£½áÂÛ ÔÚ³¬ÉùÐĶ¯Í¼´ø½ÌÖУ¬½áºÏÈ˹¤ÖÇÄÜ¿ÉÒÔ°ïÖúѧÉú¿ìËÙʶ±ð³¬ÉùÐĶ¯Í¼¸÷ÖÖÇÐÃ棬ÕÆÎÕ²»Í¬Õ÷ÏóÌØÕ÷£¬²¢Ö¸µ¼¹æ·¶»¯²É¼¯Í¼ÏñºÍ²âÁ¿£¬ÓÐÖúÓÚËõ¶ÌʵϰҽÉúÅàѵÖÜÆÚ£¬Ìá¸ß½ÌѧЧ¹û¡£
¡¡¡¡¹Ø¼ü´Ê : ³¬ÉùÐĶ¯Í¼;È˹¤ÖÇÄÜ;´ø½Ì;ҽѧ½ÌÓý;ÁÙ´²Êµ¼ù;Õï¶Ï;
¡¡¡¡Abstract£º¡¡Objective To observe the application effect of artificial intelligence in the teaching of echocardiography. Methods Sixty students who were interned in the echocardiography room of the Department of Cardiology from December 2018 to December 2019 in our hospital were pided into experimental group(n=30) and control group(n=30), the difference between the two groups of the theoretical scores, practical operation scores, diagnosis time and training time were compared, and the teaching satisfaction of the two groups were evaluated. Results The performance of theoretical and practical scores of the experimental group were higher than those of the control group(P < 0.05); the diagnosis time and training time were lower than that of the control group(P < 0.05). The teaching satisfaction of the experimental group(96.7%) was significantly higher than that of the control group(73.3%)(P < 0.05). Conclusion Combining artificial intelligence with the teaching of echocardiography can help students quickly identify various views of echocardiography, understand the characteristics of different signs, and guide the standardized acquisition of images and measurements, which can help shorten the training period of interns and improve the teaching effect.
¡¡¡¡Keyword£º¡¡echocardiography; artificial intelligence; teaching; medical education; clinical practice; diagnosis;
¡¡¡¡³¬ÉùÐĶ¯Í¼ÊÇÀûÓøßƵÂʳ¬Éù²¨µÄÌØÊâÎïÀíѧÌØÐÔ£¬¶ÔÐÄÔàºÍ´óѪ¹ÜµÄ½âÆʽṹ¼°¹¦ÄÜ״̬½øÐÐÎÞ´´ÆÀ¹ÀµÄÒ»ÏßÁÙ´²¼ì²éÊֶΡ£ÔÚÐÄѪ¹ÜÓ°ÏñÁìÓò£¬³¬ÉùÐĶ¯Í¼ÊÇΨһÄÜÎÞ´´¡¢¶¯Ì¬ÏÔʾ²¢ÊµÊ±²âÁ¿ÐÄÇ»Äڽṹ¡¢ÐÄÔ๦ÄܺÍѪҺÁ÷¶¯µÄ¼ì²âÒÇÆ÷£¬¿ÉÓÃÓÚ¹ÚÐIJ¡¡¢ÐÄÁ¦Ë¥½ß¡¢¸ßѪѹ¡¢Ðļ¡²¡¡¢ÏÈÌìÐÔÐÄÔಡ¡¢°êĤÐÔÐÄÔಡµÈÔÚÄڵĸ÷ÀàÐÄÔ༲²¡µÄÕï¶Ï¼°ÖÎÁƼà²âÖÐ[1]¡£µ«Êdz¬ÉùÐĶ¯Í¼ÇÐÃæ±È½Ï¶à£¬ÅàѵÖÜÆڽϳ¤£¬ÐèÒªÓкܺõÄÐÄÔà½âÆÊ»ù´¡ºÍ¿Õ¼äÏëÏóÁ¦£¬Õâ¾ÍÔö¼ÓÁËʵϰҽÉúµÄ´ø½ÌÄѶȡ£½üÄêÀ´£¬È˹¤ÖÇÄÜÔÚҽѧӰÏñ·½Ãæ·¢Õ¹½Ï¿ì£¬Ó볬ÉùÐĶ¯Í¼µÄÑо¿Ò²ÕýÔÚ²»¶ÏÓ¿ÏÖ¡£È˹¤ÖÇÄÜÒѾ¿ÉÒÔ×öµ½¶Ô³¬ÉùÐĶ¯Í¼ÇÐÃæµÄ×Ô¶¯·ÖÀàʶ±ð£¬Í¼Ïñ·Ö¸î×Ô¶¯²âÁ¿²ÎÊý£¬ÒÔ¼°³£¼û¼²²¡µÄ×Ô¶¯·ÖÎöÕï¶Ï¡£±¾Ñо¿ÀûÓÃÈ˹¤ÖÇÄÜÈí¼þÓÅ»¯³¬ÉùÐĶ¯Í¼½Ìѧ·½°¸£¬ÓÐÖúÓÚËõ¶ÌʵϰҽÉúÅàѵÖÜÆÚ£¬Ìá¸ß½ÌѧЧ¹û¡£ÏÖ±¨µÀÈçÏ¡£
¡¡¡¡1¡¢ ×ÊÁÏÓë·½·¨
¡¡¡¡1.1 ¡¢Ò»°ã×ÊÁÏ
¡¡¡¡ÈëÑ¡ÎÒÔº2018Äê12Ô—2019Äê12ÔÂÔÚÐÄÄڿƳ¬ÉùÐĶ¯Í¼ÊÒʵϰµÄ60ÃûѧÉú£¬¸ù¾ÝÊÇ·ñ½èÖúÈ˹¤ÖÇÄÜÈí¼þ¸¨Öú½Ìѧ£¬·ÖΪÑо¿×飨n=30£©ºÍ³£¹æ×飨n=30£©£¬ÆäÖг£¹æ×éÄÐ20Ãû£¬Å®10Ãû£¬ÄêÁä21¡«23ÖÜË꣬ƽ¾ùÄêÁ䣨22.12±1.03£©ËꣻÑо¿×éÄÐ22Ãû£¬Å®8Ãû£¬ÄêÁä20¡«23ÖÜË꣬ƽ¾ùÄêÁ䣨21.79±2.07£©Ë꣬Á½×éÒ»°ã×ÊÁϵIJîÒìÎÞͳ¼ÆѧÒâÒ壬P>0.05¡£¾ßÓпɱÈÐÔ¡£
¡¡¡¡1.2 ¡¢Ñо¿·½·¨
¡¡¡¡³£¹æ×é²ÉÓó£¹æ½Ìѧģʽ£¬°´ÕÕʵϰ´ó¸ÙÒªÇó£¬ÓÉ´ø½ÌÀÏʦʵ²Ù½ÌѧÊڿΡ£ÊµÏ°ÉúÈë¿ÆºóÓÉ´ø½ÌÀÏʦ¼¯ÖÐÊڿΣ¬Ê×ÏȽ²½â³¬ÉùÐĶ¯Í¼ÀíÂÛ֪ʶºÍ²Éͼ¹æ·¶£¬Ö®ºóÓÉ´ø½ÌÀÏʦ½øÐÐÒ»¶Ô¶à´ø½Ì¡£ÁÙ´²½ÌѧÒÔ´ø½ÌÀÏʦΪÖÐÐÄ£¬ÀÏʦʵ²ÙÖУ¬Õë¶Ô³£¼ûÐÄѪ¹Ü¼²²¡µÄ³¬ÉùÐĶ¯Í¼²»Í¬±íÏÖÔÙ½øÐÐÏêϸ½²½â£¬²¢Ö¸µ¼Ñ§ÉúÔÚ²»Í¬µÄÌå±íλÖýøÐй淶²Éͼ¡£½áÊøºó·Ö±ð¶ÔÀíÂÛ֪ʶºÍʵ¼ù²Ù×÷½øÐп¼ºË¡£
¡¡¡¡Ñо¿×éÔÚ³£¹æ½Ìѧģʽ»ù´¡ÉÏ£¬ÔÙ²ÉÓñ±¾©°²µÂÒ½Öǹ«Ë¾Ñз¢µÄAI¸¨Öú³¬ÉùÐĶ¯Í¼Õï¶ÏÈí¼þ½øÐÐѧϰ£¬´ËÈí¼þ¾¹ýÉÏÍòÀý³¬ÉùÐĶ¯Í¼Í¼Ïñ½øÐÐѵÁ·½¨Á¢Ä£ÐÍ£¬¿ÉÒÔʶ±ð³¬ÉùÐĶ¯Í¼²»Í¬µÄÇÐÃ棨°üÀ¨MÐÍ¡¢¶þά¼°¶àÆÕÀÕ³¬ÉùÐĶ¯Í¼£©¡¢¸÷ÖÖÕ÷Ï󣨰üÀ¨Ðļ¡·Êºñ¡¢ÐÄÇ»À©´ó¡¢°êĤ·´Á÷¡¢°êĤÏÁÕ¡¢ÊÒ±ÚÔ˶¯Òì³£¡¢·¿ÊÒ¼ä¸ô·ÖÁ÷µÈ£©¡¢×Ô¶¯²âÁ¿ÏàÓ¦²ÎÊý£¬ÒÔ¼°Ê¶±ð³£¼ûÐÄѪ¹Ü¼²²¡£¨°üÀ¨Ðļ¡¹£ËÀ¡¢¸ßѪѹ¡¢°êĤ²¡¡¢Ðļ¡²¡¡¢ÏÈÌìÐÔÐÄÔಡµÈ£©¡£Í¨¹ý´ËÈí¼þ°ïÖúʵϰÉú¿ìËÙÕÆÎÕ³£¼ûÐÄѪ¹Ü¼²²¡µÄ³¬ÉùÐĶ¯Í¼Õï¶Ï¡£
¡¡¡¡1.3¡¢ ÆÀ¼Û·½·¨
¡¡¡¡1.3.1 ¡¢ÂúÒâ¶È·ÖÎö
¡¡¡¡Í¨¹ýÎÊ¾í·¨£¬·ÖÎöÁ½×éѧÉú¶Ô²»Í¬½ÌѧģʽµÄÂúÒâ¶È¡£·Ç³£ÂúÒ⣺≥80·Ö£»Ò»°ãÂúÒ⣺79¡«60·Ö£»²»ÂúÒ⣺<60·Ö¡£
¡¡¡¡1.3.2 ¡¢½ÌѧЧ¹ûÆÀ¼Û
¡¡¡¡Í¨¹ý×ÔÖÆÊÔ¾íºÍµäÐͲ¡ÀýͼÏñ£¬¶ÔÁ½×éѧÉú·Ö±ð½øÐб¾´Î½ÌѧЧ¹ûÆÀ¼Û¡£°üÀ¨ÀíÂÛ֪ʶÒÔ¼°Êµ¼ù²Ù×÷ÄÜÁ¦£¬Âú·Ö¾ùΪ100·Ö¡£
¡¡¡¡1.4¡¢ ͳ¼Æѧ·½·¨
¡¡¡¡Ó¦ÓÃSPSS 22Èí¼þ½øÐÐͳ¼Æ·ÖÎö£¬¼ÆÁ¿×ÊÁÏÊýÖµÒÔ±íʾ£¬×é¼ä±È½Ï²ÉÓÃt¼ìÑ飻¼ÆÊý×ÊÁÏÒÔÀý£¨%£©±íʾ£¬×é¼ä±È½Ï²ÉÓÃχ2¼ìÑé/Fisher¾«È·¸ÅÂÊ·¨¡£ËùÓзÖÎö¾ùÒÔP<0.05Ϊ²îÒìÓÐͳ¼ÆѧÒâÒå¡£
¡¡¡¡2 ¡¢½á¹û
¡¡¡¡2.1 ¡¢Á½×é½ÌѧÂúÒâ¶È±È½Ï
¡¡¡¡Ñо¿×é½ÌѧÂúÒâ¶ÈΪ£¨96.7%£©£¬³£¹æ×é½ÌѧÂúÒâ¶ÈΪ£¨73.3%),P<0.05¡£¼û±í1¡£
¡¡¡¡2.2¡¢ Á½×é½ÌѧЧ¹û±È½Ï
¡¡¡¡Ñо¿×éÀíÂ۳ɼ¨¡¢Êµ¼ù²Ù×÷³É¼¨ÆÀ·Ö£¬¾ù¸ßÓÚ³£¹æ×飨P<0.05£©£»Õï¶Ïʱ¼äÒÔ¼°Åàѵʱ¼ä£¬¾ùµÍÓÚ³£¹æ×飨P<0.05£©¡£Ïê¼û±í2¡£
¡¡¡¡3 ¡¢ÌÖÂÛ
¡¡¡¡³¬ÉùÐĶ¯Í¼ÊÇÄ¿Ç°ÐÄѪ¹Ü¼²²¡Õï¶ÏÆÀ¹ÀµÄÁÙ´²Ò»Ïß¼ì²éÊֶΣ¬Àí½âºÍѧϰ³¬ÉùÐĶ¯Í¼£¬»á´ó´óÌá¸ß¶ÔÐÄѪ¹Ü¼²²¡²¡ÀíÉúÀí»úÖƵÄÈÏʶ¡£µ«Êdz¬ÉùÐĶ¯Í¼³ÊÏÖµÄÊÇʵʱ¶¯Ì¬µÄÐÄÔà¶þάͼÏñ£¬Í¨¹ý²»Í¬µÄ½Ç¶ÈÀ´¹Û²âÐÄÔ࣬ÇÐÃæ±È½Ï¶à£¬Õâµ¼Ö¸÷·¿ÊÒÇ»¿Õ¼ä·½Î»ºÍλÖÃÀí½âÀ§ÄÑ£¬¸ø³õѧÕß´øÀ´ºÜ´óµÄÀ§»ó¡£ÔÚ³¬ÉùÐĶ¯Í¼´ø½ÌÖУ¬´ø½ÌÀÏʦ²»½öҪǿµ÷ѧÉúÕÆÎÕÐÄÔàµÄ´óÌå½âÆÊ£¬ÊìϤÐÄÔàºÍÖÜΧÆ÷¹ÙµÄÅþÁÚ¹ØϵÒÔ¼°ÐÄÇ»ÄÚ²¿½á¹¹µÄ¿Õ¼ä·½Î»£¬°ïÖúѧÉú½¨Á¢Æð½ÏÇ¿µÄ¿Õ¼äÏëÏóÁ¦£¬Ã÷È·³¬ÉùÐĶ¯Í¼¸÷¸öÇÐÃ棬ÈçºÎ´Ó²»Í¬µÄ½Ç¶ÈÏÔʾÐÄÔàµÄ½á¹¹¡£³¬ÉùÐĶ¯Í¼Õï¶Ï¼²²¡µÄ»ù´¡ÔÚÓÚ¶Ô²»Í¬Õ÷ÏóµÄʶ±ð£¬ÕâÐèÒª¾¹ý´óÁ¿²¡ÀýµÄ·´¸´ÑµÁ·£¬±ÈÈçÐļ¡¹£ËÀµ¼ÖµĽڶÎÐÔÊÒ±ÚÔ˶¯Òì³££¬¶ÔÓÚ³õѧÕßÎÞ·¨¶ÌÆÚÄÚÕÆÎÕ£¬Õâ¾Í´ó´óÔö¼ÓÁËʵϰÉúѧϰµÄÄѶȡ£ÁíÍ⣬³¬ÉùÐĶ¯Í¼²ÎÊýµÄ²âÁ¿ÊÜÈËΪÒòËØÓ°Ïì±È½Ï´ó£¬²»Í¬Ò½ÉúÒÔ¼°Í¬Ò»Î»Ò½Éú²»Í¬´Î²âÁ¿£¬½á¹û¿ÉÄÜÃ÷ÏÔ²»Í¬£¬Õâ¾Íµ¼ÖÂʵϰÉúÔÚѧϰ¹ý³ÌÖÐÎÞ±ê×¼µÄ²ÎÕÕ¡£ËùÒÔ³¬ÉùÐĶ¯Í¼µÄѧϰÅàѵÖÜÆڽϳ¤£¬ÐèÒªÕÆÎÕµÄÀíÂÛ֪ʶ½Ï¶à£¬¶øÇÒÐèÒª½ÏÇ¿µÄÂß¼ÍÆÀíÄÜÁ¦À´Àí½âÐÄÔàµÄѪÁ÷¶¯Á¦Ñ§£¬¶øʵϰÉúÍùÍùÔÚ³¬ÉùÐĶ¯Í¼ÊÒÂÖת2¡«3ÖÜ£¬ÕâЩÒòËؾùµ¼ÖÂÆä½Ìѧ³É¹ûÇ·¼Ñ[2,3]¡£
¡¡¡¡È˹¤ÖÇÄÜÊÇÒ»ÃÅÓɼÆËã»ú¿Æѧ¡¢ÊýѧºÍÉñ¾¿ÆѧµÈ¶àѧ¿Æ½»²æµÄÑо¿»úÆ÷ѧϰµÄÐÂÐËѧ¿Æ¡£½üÄêÀ´£¬Êý¾Ý×ÊÔ´¡¢¼ÆËãѧϰÄÜÁ¦¡¢Ë㷨ģÐ͵Ȼù´¡¿ÆѧµÄÍ»ÆƳÉΪÁËÈ˹¤ÖÇÄÜ·¢Õ¹µÄÖØÒªÍƶ¯Á¦[4]¡£ÔÚͼÏñ´¦ÀíÁìÓò£¬È˹¤ÖÇÄܶÔÓÚͼÏñ·ÖÀࡢͼÏñ·Ö¸î¼°Ä¿±ê¼ì²âµÈ¶à¸öÀà±ðµÄ¹¤×÷£¬ÒѾ´ïµ½ÉõÖÁ³¬Ô½ÈËÀàµÄˮƽ¡£Òò´Ë·Ç³£ÊʺÏÓ¦ÓÃÓÚÒ½ÁÆÓ°ÏñÁìÓò£¬´Ó¶ø´ïµ½×Ô¶¯ÅжÁ¡¢¸¨Öú¿ìËÙÕï¶ÏµÄÄ¿µÄ¡£Éî¶ÈѧϰÊǵ±Ç°È˹¤ÖÇÄÜÁìÓòÑо¿×î¶à¡¢Ó¦ÓÃ×î¹ã¡¢Ç°¾°×î´óµÄ·½ÏòÖ®Ò»£¬Ïà½Ï´«Í³»úÆ÷ѧϰËã·¨£¬Éî¶ÈѧϰÔÚͼÏñ´¦Àí·½Ãæ¾ßÓÐÃ÷ÏÔÓÅÊÆ¡£½ü¼¸Ä꣬Éî¶ÈѧϰÔÚҽѧӰÏñÁìÓò·¢Õ¹½Ï¿ì£¬Õë¶Ô°üÀ¨·Î²¿¡¢ÈéÏÙ¡¢ÐÄÔà¡¢ÂÄÔ¡¢¸ÎÔàµÈÖî¶àÆ÷¹Ù¼²²¡µÄºË´ÅºÍCTÓ°ÏñµÄÉî¶Èѧϰ¾ù¿ÉʵÏÖ½Ó½ü»ò³¬Ô½×¨¼ÒË®×¼µÄ×Ô¶¯Ê¶±ðÓëÕï¶Ï[5,6]¡£ÔÚ³¬ÉùÐĶ¯Í¼ÁìÓò£¬Ä¿Ç°Ñо¿±¨µÀÈ˹¤ÖÇÄÜÒѾʵÏÖÁËÇÐÃæʶ±ð¡¢Í¼Ïñ·Ö¸î£¬ÊµÏÖÁËÐÄÔ๦ÄܲÎÊýµÄ×Ô¶¯»¯²âÁ¿£¬ÒÔ¼°³£¼ûÐÄѪ¹Ü¼²²¡µÄʶ±ð[7,8,9]¡£
¡¡¡¡±í1 Á½×é½ÌѧģʽÂúÒâ¶È±È½Ï[Àý£¨%£©]
¡¡¡¡±í2 Á½×é½ÌѧЧ¹û±È½Ï
¡¡¡¡ÔÚ´óÊý¾ÝºÍÈ˹¤ÖÇÄÜʱ´ú£¬½ÌÓýÁìÓòÒ²ÕýÔÚÏòÖÇÄÜ»¯Ê±´úÇ°½ø¡£ÀûÓÃÈ˹¤ÖÇÄܸ¨Öú½Ìѧ£¬ÒѾÔÚ¸÷Ðи÷ÒµÖнÐøÕ¹¿ª£¬²¢ÇÒ¾ùÊܵ½Á˺ܺõÄЧ¹û[10,11]¡£ÔÚҽѧ½ÌÓýÖУ¬È˹¤ÖÇÄÜÒ²ÕýÔÚÒýÁìҽѧ½ÌÓýµÄ¸Ä¸ï[12,13,14]¡£²¢ÇÒҽѧӰÏñÓëAIµÄ½áºÏ±»ÈÏΪÊÇ×î¾ß·¢Õ¹Ç°¾°µÄÁìÓò£¬Ä¿Ç°AIÓ¦ÓÃÓÚҽѧӰÏñ½ÌÓýµÄÀíÂÛ½ÌѧºÍÁÙ´²Êµ¼ù½ÌѧµÄÑо¿ÒÑÖð²½Õ¹¿ª[15,16,17]¡£ÔÚ½Ìѧģʽ·½Ã棬AI¸¨Öú½ÌѧӦÓÃÓÚҽѧӰÏñѧ¹æ·¶»¯ÅàѵÖУ¬Îª²»Í¬×¨Òµ¡¢²»Í¬²ã´ÎµÄסԺҽʦÌṩ¸öÐÔ»¯¡¢ÖÇÄÜ»¯µÄÈË»ú½»»¥½Ìѧģʽ£¬Äܹ»ÔÚ¶Ìʱ¼äÄÚÅàѵסԺҽʦÓÐЧÕÆÎÕҽѧӰÏñ¼¼ÄÜ¡£±¾Ñо¿ÀûÓÃÈ˹¤ÖÇÄÜÈí¼þ¸¨Öú³¬ÉùÐĶ¯Í¼½ÌѧµÄÓÅÊÆÔÚÓÚ£¬Æä¿ÉÒÔ×Ô¶¯Ê¶±ð³¬ÉùÐĶ¯Í¼²»Í¬µÄÇÐÃ棬²¢ÇÒ±êʶ¸÷¸ö·¿ÊÒÇ»µÄλÖ㬾ÍÏ൱ÓÚÓÐÒ»¸öר¼ÒÕ¾ÔÚʵϰÉúÅԱ߸øÓèÒ»¶ÔÒ»£¬ÊÖ°ÑÊֵĽ̵¼¡£¶øÇÒ£¬È˹¤ÖÇÄÜ¿ÉÒÔ×öµ½¶Ô³¬ÉùÐĶ¯Í¼²»Í¬Õ÷ÏóµÄʶ±ð£¬±ÈÈç°êĤÏÁÕ£¬°êĤ·´Á÷£¬ÊÒ±ÚÔöºñ£¬·¿ÊÒÇ»Ôö´ó£¬ÊÒ±ÚÔ˶¯Òì³£µÈ£¬ÊµÏ°ÉúÔÚÉϼ¶²Ù×÷ʱ£¬½èÖúÈ˹¤ÖÇÄÜÈí¼þ£¬¿ÉÒÔ¿ìËÙµØѧϰ¸÷ÖÖÐÄѪ¹Ü¼²²¡µÄ²»Í¬Õ÷ÏóÌØÕ÷£¬¶ÔÓÚ²»Í¬Õ÷ÏóµÄʶ±ðÊÇÕï¶Ï¼²²¡µÄ×îÖ÷ÒªÒÀ¾Ý£¬Õâ¾Í´ó´óËõ¶ÌÁËʵϰÉúµÄѧϰÖÜÆÚ£¬Ã÷ÏÔÌá¸ß½Ìѧ³É¹û¡£ÐÄÔà½á¹¹ºÍ¹¦Äܵľ«Ï¸»¯²âÁ¿Ò²Êdz¬ÉùÐĶ¯Í¼µÄÖØÒª²¿·Ö£¬Æ½Ê±ÓÉÓÚ¹¤×÷Á¿´ó£¬ºÜ¶àʱºòÐèÒªÒÀ¿¿¼ì²éÕßÄ¿²â½øÐдóÌåÆÀ¹À£¬Õâ¾ÍÒÀÀµÓÚ¼ì²éÕߵľÑéºÍÄÜÁ¦£¬¶ÔÓÚʵϰÉú¶øÑÔ£¬¾Í²»ÄÜ׼ȷµØÕÆÎÕ¸÷¸ö²ÎÊý²âÁ¿µÄ±ê×¼¡£È˹¤ÖÇÄÜÈí¼þÄ¿Ç°¿ÉÒÔʵÏÖ×Ô¶¯²âÁ¿²ÎÊý£¬³ö¾ß±ê×¼»¯±¨¸æ¡£ËùÒÔÔÚÈ˹¤ÖÇÄܵĸ¨ÖúÏ£¬ÊµÏ°Éú¿ÉÒÔ¿ìËÙÕÆÎÕ±ê×¼»¯²âÁ¿ÒªÇóºÍ·½·¨¡£
¡¡¡¡×ÛÉÏËùÊö£¬ÔÚ³¬ÉùÐĶ¯Í¼½Ìѧ¹ý³ÌÖУ¬½èÖúÈ˹¤ÖÇÄÜÈí¼þ¸¨Öú£¬ÕâÖÖÈË»ú½»»¥Ê½µÄ½Ìѧģʽ£¬Äܹ»ÓÐЧµØÌá¸ßѧÉú¶Ô³¬ÉùÐĶ¯Í¼ÀíÂÛ֪ʶµÄÕÆÎÕ£¬´ó´óËõ¶ÌÁËʵϰÉúµÄѧϰÖÜÆÚ£¬¿ìËÙÌá¸ß¶Ô³¬ÉùÐĶ¯Í¼Í¼ÏñµÄÈÏʶ£¬ÒÔ¼°¼ÓÉîÁ˶ÔÓÚÐÄѪ¹Ü¼²²¡µÄÀí½â£¬²¢Ôö¼ÓÁ˽ÌѧÂúÒâ¶È¡£
¡¡¡¡²Î¿¼ÎÄÏ×
¡¡¡¡[1] Mitchell C ,Rahko PS ,Blauwet LA,et al. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults. Recommendations from the American Society of EchocardiographylJ]. J Am Soc Echocardiogr,2019,32(1):1-64.
¡¡¡¡[2]ºú¹ú±ø,ÖìÏòÃ÷¹ØÓÚÐÄÔ೬ÉùÕï¶ÏÁÙ´²Êµ¼ù´ø½ÌµÄ¼¸µãÌå»á[J].Öйú¼ÌÐøҽѧ½ÌÓý, 2020(12):61-62.
¡¡¡¡[3]ÀîÓ±.΢¿ÎÔÚ³¬ÉùÕï¶Ïѧʵϰ½ÌѧÖÐÓ¦ÓõÄÑо¿[J].Öйú¼ÌÐøҽѧ½ÌÓý, 2017,9(5):44-45.
¡¡¡¡[4] Madani A,Amaout R,Mofrad M,et al. Fast and accurate view classifc ation of echocardiograms using deep le arning[J]_ Digital Medicine,2018(16):1-8.
¡¡¡¡[5] Obermeyer Z, Emanuel EJ. Predicting the future-big data,machine learning, and clinical medicine[J]. N Engl J Med,2016,37(5):1216-1219.
¡¡¡¡[6] Rajikomar A,Dean J,Kohane 1. Machine Learming in Medicine[J]. N Engl J Med,2019,380(14):1347-1358.
¡¡¡¡[7] Madani A.Ong JR.,Tbrewal A.et al. Deep echocardiography:data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease[J]. NPJ Digit Med, 2018(1):59.
¡¡¡¡[8] Zhang J,Gajala s. Agrawal P,et al. Fully Automated Echocardiogram Interpretation in Clinical Practice[J]. Circulation,2018, 138(16):1623-1635.
¡¡¡¡[9]½¯½¨»Û»ùÓÚÉî¶ÈѧϰµÄ³¬ÉùÐĶ¯Í¼×Ô¶¯·ÖÀàÓë²ÎÊý²âÁ¿Ñо¿[D].ÄϾ©:¶«ÄÏ´óѧ, 2019.
¡¡¡¡[10]µÔÀ×,ÐϹú´º´óÊý¾Ý»·¾³ÏÂÈ˹¤ÖÇÄܼ¼ÊõÔÚ½ÌÓýÁìÓòµÄÓ¦ÓÃÑо¿[J]Ç鱨¿Æѧ, 2019,37(11):127-132,143.
¡¡¡¡[1]Ôø»Ô.È˹¤ÖÇÄܼ¼ÊõÔÚ½ÌÓýÁìÓòµÄÓ¦ÓÃ[J].µç×Ó¼¼ÊõÓëÈí¼þ¹¤³Ì, 2019(19):241-242.
¡¡¡¡[12]ÔÀ÷,ÕÅÒ¶½È˹¤ÖÇÄÜʱ´úҽѧ½Ìѧ¸Ä¸ï·½ÏòÑо¿[J].Öйú¼ÌÐøҽѧ½ÌÓý, 2020,12(7):6-9.
¡¡¡¡[13]ÍõÃÎϪ,ÍõÄÈ,ÕÅÐÀ¶à,µÈÈ˹¤ÖÇÄÜҽѧ½Ìѧƽ̨µÄ¹¹½¨[J].Öйú¸ßµÈҽѧ½ÌÓý, 2020(3):46-48.
¡¡¡¡[14]ÀîÎÄÐÇ¡£Ìƾü£¬ÇüÒÕ£¬µÈÈ˹¤ÖÇÄÜÔÚҽѧ½ÌÓýÖеÄÓ¦Óúͷ¢Õ¹[J].³É¶¼ÖÐÒ½Ò©´óѧѧ±¨(½ÌÓý¿Æѧ°æ) , 2019.21(1):17-18,60.
¡¡¡¡[15]³ÂÓî³½¹ÉÐŵÀ.סԺҽʦ¹æ·¶»¯ÅàѵÔÚ Ò½Ñ§Ó°Ïñ¿ÆµÄ½Ìѧ·½·¨Ì½Ë÷- ÒÔÄϾ©ÊеÚһҽԺҽѧӰ Ïñ¿ÆΪÀý[J]½ÌÓý½ÌѧÂÛ̳,2020(14):266-269.
¡¡¡¡[16]ÕÅȽȽ,ÆÑÀûºì,ÕÅÎÄ,µÈÈ˹¤ÖÇÄÜÔÚҽѧӰÏñ½ÌÓýÖеÄÓ¦ÓÃÏÖ×´ºÍÇ°¾°[J].ÏÖ´úÔ¤·Àҽѧ, 2019,46(24):4527-4529.
¡¡¡¡[17]»ÆÀöÀû,ÁÎÏþ»ÔÈ˹¤ÖÇÄܽáºÏ»ìºÏʽ½ÌѧÔÚÄÚ¿Æѧ½ÌѧÖеÄÓ¦ÓÃ[J].ÏÖ´úÒ½Ò©ÎÀÉú, 2019,35(8):1260-1263.
³¬ÉùÐĶ¯Í¼°ßµã×·×ÙÏÔÏó¼¼ÊõµÄÁÙ´²Ó¦ÓÃ
1STIµÄ»ù±¾ÔÀíSTIÊǶÔÐļ¡Ô˶¯½øÐÐÓ¦±ä·ÖÎöµÄÒ»ÖÖеij¬ÉùÐĶ¯Í¼¹¦ÄܳÉÏñ¼¼Êõ£¬¶þά»Ò½×ͼÏñÖÐСÓÚÈëÉ䳬Éù²¨³¤µÄϸ΢½á¹¹¶Ô³¬Éù²¨½«²úÉúÉ¢Éä¡¢·´ÉäºÍ¸ÉÈŵÈÏÖÏó£¬ÐγÉÐļ¡×éÖ¯ÖеĻØÉù°ßµã.STI¾ÍÊÇÔÚ¸ß֡Ƶ¶þά»Ò½×³¬ÉùͼÏñµÄ»ù´¡ÉÏ£¬²ÉÓÃ×î¼Ñģʽƥ...
»ù²ãÒ½ÉúµÄ²úÇ°Ì¥¶ù³¬ÉùÐĶ¯Í¼Õï¶ÏˮƽÌáÉý
ÎÒ¹úÓÐÏ൱²¿·ÖÔÚ»ù²ãÒ½ÁÆ»ú¹¹·þÎñµÄÒ½ÉúÓÉÓÚµØÓò²î±ð£¬Ò½ÁÆ֪ʶ¸üÐÂ;¾¶ÓÐÏÞ£¬»ù´¡ÀíÂÛ֪ʶØÑ·¦£¬Ê¹µÃ»ù²ãҽʦµÄˮƽ²Î²î²»Æ룬Õâ¾ÍÔì³É²úÇ°Ì¥¶ùÐÄÔ೬Éù¼ì²éÔÚ¹úÄÚÆÕ¼°Âʵͣ¬µ¼ÖÂÎÒ¹úÿÄêÈÔÓÐ10ÍòÓàÏÈÌìÐÔÐÄÔಡ»¼¶ù³öÉú¡£ÔÚÕâЩÏÈÌìÐÔÐÄÔಡ»¼¶ùÖУ¬ºÜ...
È˹¤ÖÇÄÜÔÚÈéÏÙ³¬ÉùÖеÄÓ¦ÓÃ̽Îö
³¬ÉùÊÇɸ²éÈéÏÙ°©µÄÖØÒªÓ°Ïñѧ·½·¨£¬³ý»Ò½×³¬ÉùÍ⣬²ÊÉ«¶àÆÕÀÕ¡¢ÆµÆ׶àÆÕÀÕ¡¢³¬ÉùÔìÓ°¼°µ¯ÐÔ³ÉÏñµÈм¼ÊõÓÐÖúÓÚ»ñµÃ¸ü׼ȷµÄÐÅÏ¢£¬µ«´æÔÚ²Ù×÷ÕßÒÀÀµÐÔ£¬¶øÍ»ÆÆÕâÒ»¾ÖÏÞÐԵĹؼüÊÇÌá¸ß³¬Éù¼ì²éµÄ±ê×¼»¯¡¢¹æ·¶»¯³Ì¶È¼°Á¿»¯×¼È·ÂÊ¡£...
Ö÷¶¯Âö¹·ÖÖ§Òì³£Õï¶ÏÖг¬ÉùÐĶ¯Í¼µÄÓ¦ÓÃ
½üÄêÀ´£¬Ëæ×ų¬ÉùÐĶ¯Í¼¼¼ÊõµÄ·¢Õ¹Óë½ø²½£¬³¬ÉùÐĶ¯Í¼ÈýѪ¹ÜÇÐÃæÒ²Öð½¥Ó¦ÓÃÓÚ²úÇ°¼ì²éÖУ¬ÆäÔÚÕï¶ÏÌ¥¶ùÊÇ·ñ´æÔÚÏÈÌìÐÔÐÄÔಡ¡¢´óѪ¹Ü»ûÐεÄÕï¶ÏÖоßÓÐÖØÒª×÷Óá£...
³¬ÉùҽѧÁìÓòÔËÓÃÈ˹¤ÖÇÄܼ¼ÊõµÄÓÅÊÆ·ÖÎö
³¬Éùҽѧ×÷ΪӰÏñÁìÓòµÄÖØÒª·ÖÖ§, ÀûÓÃAIÏà¹ØËã·¨½øÐÐÉùÏñͼ·ÖÎöµÄÑо¿²»¶ÏÓ¿ÏÖ, ²»½öΪÁÙ´²¿ÆÑÐÌṩÁËÐÂ˼·, ÒàÓÐÖúÓÚÌá¸ß³¬ÉùÕï¶ÏµÄ׼ȷÐÔ¡£...