发育生物学论文

您当前的位置:学术堂 > 生物学论文 > 发育生物学论文 >

NO对拟南芥气孔发育的调节作用

来源:学术堂 作者:韩老师
发布于:2015-12-02 共3511字

  引言

  气孔作为植物与外界环境进行气体交换(主要是CO2和H2O)的重要通道,在调节植物光合作用、蒸腾作用以及水分利用中扮演 着 至 关 重 要 的 角色[1].近年来通过研究气孔发育异常的突变体,发现了许多调控气孔发育的基因,因此对气孔发育基本遗传途径的认识越来越清晰。植物气孔发育受到多种环境因素影响,如二氧化碳和水蒸气,而研究表明一氧化氮(nitric oxide,NO)作为广泛分布于生物体内的活性小分子,参与了植物生长发育的许多过程[2].那么NO是否也能影响植物气孔发育,目前还没有相关报道,为了探究NO在气孔发育过程中的功能,本实验利用外源NO处理,以及NO含量变化突变 体,证 明NO调 节 拟 南 芥 气 孔 发 育 过 程,qRT-PCR结果表明,NO影响气孔发育相关基因MUTE、SCRM及SCRM2的表达。本结果为植物气孔发育的调控提供了新的证据,对于改良植物的抗旱性具有重要的理论价值。

  1 材料与方法

  1.1材料及处理方法

  实 验 所 用 野 生 型 拟 南 芥 (Arabidopsisthaliana L.)为Columbia-0生态型,拟南芥突变体nox1(CS3156)和noa1(CS6511)均购于拟南芥信息资源库(The Arabidopsis Information Resource)拟南 芥 种 子 经 过 消 毒 液 (5% NaClO和0.01%Triton X-100)消毒5min后,无菌水清洗3次,4℃春化3d后播种于含1%蔗糖和0.8%琼脂的1/2MS培养基(pH 5.8)。

  外源SNP处理时,先将种子在1/2MS培养基中萌发1d,然后移至提前添加不同浓度SNP的1/2MS培养基中,SNP浓度分别为0、10、20、30和40μmol·L-1.以上材料均置于拟南芥培养箱中,培养温度为22℃,光周期为16h光照/8h黑暗,光照强度为100μmol·m-2·s-1,湿度为80%~90%.

  1.2实验方法
  
  1.2.1显微技术取新鲜叶片投入脱色液(V乙醇 ∶V乙酸 =19∶1)中脱色1h,再将脱去叶绿素的叶片浸入透明剂中透明1h,然后用Olympus BX60微分干涉差显微镜(differential interference contrast microscope,DIC)照相。透明剂配方为:水合氯醛80g,甘油10mL,用水定容至100mL.

  1.2.2气孔相关参数统计野生 型WT,突 变 体nox1(CS3156)和noa1(CS6511)三个株系分别随机选择十株七天的幼苗,观察统计幼苗子叶下表皮的气孔指数(stomatal in-dex,SI)和%(GMC+M)。拍照时每个子叶拍摄两个不重叠、避开叶脉和叶边缘的图片,借助ImageJ软件来统计SI和%(GMC+M),实验重复3次。

  拟南芥的气孔发育要经历三种不同的前体细胞:拟分生组织母细胞(MMC)、拟分生组织细胞(M)和保卫母细胞(GMC)[3],为了更全面准确地分析气孔发育过程,一般将SI和%(GMC+M)作为衡量气孔发育 的 指 标。

  SI=气 孔 数/(气 孔 数+表 皮 细 胞数);%(GMC+M)=(保卫母细胞数+分生组织细胞数)/(保卫母细胞数+分生组织细胞数+气孔数+表皮细胞数)[4].实验数据用Microsoft Excel 2003软件进行处理,采用Origin 8软件作图,本文中所有统计作图中Error bars代 表 标 准 误 差 均 值。星 号 代 表 通 过student t test计算出的差异的显着性程度(*,P<0.05;**,P<0.01;***,P<0.001)。

  1.2.3 RNA提取和qRT-PCRRNA提取:用Trizol(Invitrogen)提取生长七天幼苗的子叶RNA,每个株系选取100株幼苗,实验 重复3次,具体步骤如下:液氮研磨幼苗,加入1mL的Trizol,剧烈震荡15s,室温静置5min后移至冰上,4℃,12 000rpm,15min离心后取上层红色液体于新的EP管中,之后加入200μL氯仿震荡15s,室温静置2min.4 ℃,12 000rpm,15min离心后取上清于新的EP管中,加入500μL异丙醇,室温静置30min后再次4℃,12 000rpm,15min离心,吸去管中液体,留管底白色沉淀,用70%乙醇吹打沉淀使其悬浮,4 ℃,7 500rpm,5min离心后吸去乙醇,将EP管置于超净台干燥,最后加入20μLDEPC H2O溶解沉淀。

相关内容推荐
相关标签:
返回:发育生物学论文