机械工程设计应用中,我们会遇到各种各样的问题,如机械产品的系列化设计,在大小不同的型号设计中,我们如何把成熟产品的经验成功转移到其他系列产品中。 显然,若机械地采用几何相似形状比例放大是不科学的,因为构件尺寸的改变,外部受力环境的变化,其构件的力学强度、刚度、形变、体积、振动频率等均发生了非比例的变化。 再如在大型机械设备设计中,我们可以利用小型验证机形式来检验大型设备的合理性和可行性,那么小型验证机如何可靠地模拟出大型设备的机械特征,使实验真实的反映出可靠数据,实践证明力学模型是一个较为简便实用的方法,下面就此展开讨论。
1 固态线弹性体的相似模拟
首先我们把各式各样的承载件抽象称为满足虎克定律的固态物质构成的连续弹性体,可以假定,当作用于这一物体任一点外力为零时,其任一点的内应力也为零。
设这一受密度等于 P1(X,Y,Z)的面积力和密度等于 P2(X,Y,Z)的体积力,物体上一点由 P1 产生的应力、应变、变形分别为 б1、ε1、Y1, 由 P2产生的应力、应变、变形分别是 б2、ε2、Y2。
取任一曲面 S 将物体分离并研究分离体必有下式成立:【1】
б 是分离面上的应力,S 是分离面面积,F 是分离体外表面(不含 S),V 是分离体所处的空间。
1)如果面积力密度=P1×A,体积力密度=P2×B,则由线性系统的可迭加性知,应力=б1×A+б2×B,应变=ε1×A+ε2×B,变形=Y1×A+Y2×B。
2)当 P2=0,面积力密度=P1,物体尺度变为 C 倍(即物体内任意两点的距离 L 均变为 BL)时 ,相当于式 1 中每一面积均变为 C2倍,即下式成立:【2】
从而 б′=б2×C,即应变=ε2×C,变形=Y2×C″。
4)综上所述 , 当面积力密度 =P1×A, 体积力密度=P2×B, 尺度变为 C 倍时, 应力=б1×A+б2×B×C,应变=ε1×A+ε2×B×C, 变形=(Y1×A+Y2×B×C)×C。
假设存在各种不同的应用环境,把不同的参数带入公式, 可得出表 1 中一些有用的推论。
2 固态线弹性体自由振动的相似模拟
设线弹性体作简谐、稳态、同步的自由振动,即每点 i 的位移均可表示为 Yi=∑Cij×COS (ω0j×t),ω0j是第 j 阶固有圆频率(简称频率),我们仅考察其某一阶的固有振动。
弹性体内任一无穷小的分离体都在作相同频率、相同相位的振动。 设它的外表面是曲面 S,它包围的空间为 V,在 ω0j×t=Kπ 时,分离体各点的位移即变形达最大值,振幅、加速度也达最大值,而速度=0。 研究这一时刻的状态,使动力学问题形式上变成了仅受体积力和惯性力的静力学问题。【3】
是分离体内物质的密度,Y 是分离体的变形(即振幅)。
设密度不变, 物体尺度变为 C 倍, 求固有频率ω0j`,设体积力密度不变,即最大振动加速度不变(这一假设并无必要, 因为线性系统作自由振动时的振幅与频率无关,这里仅是为了叙述方便),由表第 6项计算结果得应力变为 C 倍,变形变为 C2倍有下式成立:【4】
结论:线弹性体的固有频率与尺度成反比,或者说,线弹性体的固有振动周期与尺度成正比。
3 固态线弹性体强迫振动的相似模拟
现将振动器及振动体的尺度变为 C 倍,而将振动器的工作频率变为 1/C 倍,由于振动体的固有频率也变为 1/C 倍,故工作频率与固有频率之比 W 不变。
振动器的偏心块质量变为 C3倍,偏心块的偏心矩变为 C 倍,从而振动器的偏心质量矩变为 C4倍,振动力=质量矩×工作频率平方,故振动力变为 C2倍。
振动器与振动体间的作用力及振动体各构件间的作用力视为面积力,因作用面积也变为 C2倍,故面积力密度不变。 但因为振动体的质量变为 C3倍,而振动力变为 C2倍,故惯性力密度变为 1/C 倍。
根据表中计算结果 9 知应力不变,我们可以计算振动强度的变化,并以振动输送机械为例加以说明,振动强度=振动加速度/重力加速度。 由于振动加速度变为 1/C 倍,故振动强度变为 1/C 倍,因此,上述方法虽然可以准确地模拟刚度和强度但不能模拟振动强度 K。但对振动输送来说,模拟为相同的振动强度 K 是重要的,因为平均输送速度=A×φ(K)×g/ω,式中 A 是与槽体角度、振动方向有关的数,g 为重力加速度,ω 为工作频率,要使振动强度不变,需要振动力变为 C3倍。 这时可以采取如下方法:令工作频率=ω/C0.5,振动力变为 C3倍,从而振动强度 K 不变,模型机的物料输送速度=真实机的物料输送速度×C0.5,由此可以计算真实机的产量。
上述计算对于减振弹簧同样适用,不过重力的影响用这一方法不能模拟,但因在振动机械中重力影响较小,所以,上述结论适用于重力可以忽略的场合。 一般说来,我们是用小机器模拟大机器,即 C<1状况,若材料不变,可以精确模拟刚度,若模拟强度,还须考虑尺寸系数的影响。
4 以上论述的实际用途
1)静力模拟的应用如果一机器或结构的构件自身重量和惯性力很小,甚至可以忽略,并且不存在导热等问题,那么就可以用此种方法设计。 比如压力容器、起重工具、低速传动件、连接件等,也可以对满足上述条件的局部按上述方法设计,对其余部分另作考虑。
2)振动机械方面的应用振动是很复杂的问题,有些问题没有好的算法,计算机模拟也有不足之处。 另外,振动机械往往体积很大,实验风险和投入的成本都很高。 有些机器长达数十米,重达数十吨,故做小模型机试验很合算。如果做 1:10 的模型,仅需 1/1 000 的材料消耗,实验时电能消耗也较少。如果模型存在问题,修改或重做都简单,另外,小机器也易控制操作,破坏性试验的成本也小。
随着人类的进步与发展,人们逐渐从建筑结构和实践中总结经验,发展成力学理论与方法。这些理论和方法又反过来应用于工程中的各个领域当中。建筑结构的发展与力学是息息相关的。可以说,没有可靠的力学和结构分析就没有安全的建筑结构。特别是对于现代的高层...
为评估支流发生超标准洪水对输水航道的影响,采用丹麦丹华公司的MIKE软件构建江淮沟通段二维水动力学模型,模拟计算支流超标准洪水的洪水演进,分析各个支流汇入口处对输水航道的影响,为工程设计提供了科学依据。...
通常,在实际学习中,力学是一门属于利用数学方法对机械运动进行探究的学科,由于其阐述的基本规律和内容带有一定的普遍性,故在实际工程中可提供较为广泛的技术理论,也可为土木工程等工程技术提供相关设计原理、计算方式、实验等依据。...
当前各个学科相互渗透、相互融合已经成为发展的必然趋势。物理作为一门自然基础学科也不是孤立存在,越来越多地融入了控制理论进行分析。许多物理现象,例如在椭圆轨道运行的人造卫星,小车上的柔杆运动,都可以简化为惯量-阻尼-弹簧系统运动。本文针对惯...
引言理论力学是一门应用广泛的基础课程,但是目前在理论力学的课程内容设置和教学中存在很多弊端,教学内容与力学重复较多,并且缺乏时代气息,缺乏与当前的科技成果紧密的联系。另外理论力学的理论性较强、概念抽象、逻辑思维要求高,传统的教学模式大都是...
0引言3D打印技术是根据所设计的模型通过3D打印设备逐层增加材料来制造三维产品的技术[1].随着3D打印技术的不断发展[2],其运用越来越广泛。对于汽车行业由于其能简化生产环节、缩短生产周期、加快汽车更新换代速度、满足消费者个性化消费的心理方面、汽车维...
0前言以千枚岩、泥岩和板岩为代表的岩体是一种典型的工程软岩,其岩质软弱,可直接用手掰断,完整性极差,遇水后呈泥状。在软岩地段进行隧洞开挖极易发生软岩大变形,并引发生拱架扭曲、喷混凝土开裂、围岩收敛不稳定等严重的工程现象,严重情况下甚至发生...
阶梯-深潭系统是山区河流常见的河床微地貌现象,由一段陡坡和一段缓坡加上深潭相间连接而成,呈一系列阶梯状,是山区河流为维持稳定进行的自我调整。中国山区面积大,分布广,阶梯-深潭系统在云南、四川和贵州等省份均广泛分布。国际上对于阶梯-深潭系统的研...
岩体力学性质是一切岩体工程设计支护以及评价的基础,长期以来都是研究重点,当然也是难点。目前,在实际工程中,通常是把岩体看作均质、连续、各向同性的弹性介质来处理,然而实际工程中岩体呈现各向异性力学特征。...
通过锥体上滚的受力分析可以看出, 利用守恒定律解释力学问题很简洁, 但是不能给出物体运动的细节情况, 受力分析可以更深刻地展现物体的运动原因.另外, 可以通过百度查到很多物理演示实验的原理, 但是教师应该在教学中充分引导学生用自己的观点解决问题, 也重...