农艺学论文

您当前的位置:学术堂 > 农学论文 > 农艺学论文 >

土壤有机碳矿化对温度敏的感性问题探究(7)

来源:生态学报 作者:黄锦学;熊德成;刘小飞
发布于:2017-06-27 共24500字
  [64] Kleber M. What is recalcitrant soil organic matter? Environmental Chemistry,2010,7( 4) : 320-332.  
  [65] Wright S J,Muller-Landau H C,Schipper J A N. The future of tropical species on a warmer planet. Conservation Biology,2009,23( 6) :1418-1426.  
  [66] Xu X K,Inubushi K,Sakamoto K. Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanicforest soils. Geoderma,2006,136( 1 /2) : 310-319.  
  [67] Laudicina V A,Novara A,Barbera V,Egli M,Badalucco L. Long-term tillage and cropping system effects on chemical and biochemicalcharacteristics of soil organic matter in a mediterranean semiarid environment. Land Degradation & Development,2015,26( 1) : 45-53.  
  [68] Verburg P S J,Van Loon W K P,Lükewille A. The CLIMEX soil-heating experiment: soil response after 2 years of treatment. Biology and Fertilityof Soils,1999,28( 3) : 271-276.  
  [69] 米亮,王光华,金剑,刘巨东,刘晓冰。 黑土微生物呼吸及群落功能多样性对温度的响应。 应用生态学报,2010,21( 6) : 1485-1491.  
  [70] Nazaries L,Tottey W,Robinson L,Khachane A,Al-Soud W A,Sorenson S,Singh B K. Shifts in the microbial community structure explain theresponse of soil respiration to land-use change but not to climate warming. Soil Biology and Biochemistry,2015,89: 123-134.  
  [71] Wixon D L,Balser T C. Toward conceptual clarity: PLFA in warmed soils. Soil Biology and Biochemistry,2013,57: 769-774.  
  [72] Ziegler S E,Billings S A,Lane C S,Li J W,Fogel M L. Warming alters routing of labile and slower-turnover carbon through distinct microbialgroups in boreal forest organic soils. Soil Biology and Biochemistry,2013,60: 23-32.  
  [73] Holland E A,Neff J C,Townsend A R,Mckeown B. Uncertainties in the temperature sensitivity of decomposition in tropical and subtropicalecosystems: implications for models. Global Biogeochemical Cycles,2000,14( 4) : 1137-1151. 
  [74] Wixon D L,Balser T C. Complexity,climate change and soil carbon: a systems approach to microbial temperature response. Systems Research andBehavioral Science,2009,26( 5) : 601-620.  
  [75] Trasar-Cepeda C,Gil-Sotres F,Leirós M C. Thermodynamic parameters of enzymes in grassland soils from Galicia,NW Spain. Soil Biology andBiochemistry,2007,39( 1) : 311-319.  
  [76] Xu X,Shi Z,Li D J,Rey A,Ruan H H,Craine J M,Liang J Y,Zhou J Z,Luo Y Q. Soil properties control decomposition of soil organic carbon:Results from data-assimilation analysis. Geoderma,2016,262: 235-242.  
  [77] Xu X,Luo Y Q,Zhou J Z. Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biology andBiochemistry,2012,50: 142-148.  
  [78] Peng S S,Piao S L,Wang T,Sun J Y,Shen Z H. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology andBiochemistry,2009,41( 5) : 1008-1014.  
  [79] Zheng Z M,Yu G R,Fu Y L,Wang Y S,Sun X M,Wang Y H. Temperature sensitivity of soil respiration is affected by prevailing climaticconditions and soil organic carbon content: A trans-China based case study. Soil Biology and Biochemistry,2009,41( 7) : 1531-1540.  
  [80] Lipson D A,Schadt C W,Schmidt S K. Changes in soil microbial community structure and function in an alpine dry meadow following spring snowmelt. Microbial Ecology,2002,43( 3) : 307-314.  
  [81] Rustad L E,Huntington T G,Boone R D. Controls on soil respiration: implications for climate change. Biogeochemistry,2000,48( 1) : 1-6.  
  [82] Rustad L,Campbell J,Marion G,Norby R J,Mitchell M,Hartley A E,Cornelissen J H C,Gurevitch J,GCTE-NEWS. A meta-analysis of theresponse of soil respiration,net nitrogen mineralization,and aboveground plant growth to experimental ecosystem warming. Oecologia,2001,126( 4) : 543-562.  
  [83] Eliasson P E,McMurtrie R E,Pepper D A,Stromgren M,Linder S,Agren G I. The response of heterotrophic CO2flux to soil warming. GlobalChange Biology,2005,11( 1) : 167-181.  
  [84] Li D J,Schdel C,Haddix M L,Paul E A,Conant R,Li J M,Zhou J Z,Luo Y Q. Differential responses of soil organic carbon fractions towarming: results from an analysis with data assimilation. Soil Biology and Biochemistry,2013,67: 24-30.  
  [85] Lin J J,Zhu B,Cheng W X. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon. Global Change Biology,2015,21( 12) : 4602-4612.  
  [86] Hartley I P,Ineson P. Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biology and Biochemistry,2008,40( 7) : 1567-1574.  
  [87] Frseth R B,Bleken M A. Effect of low temperature and soil type on the decomposition rate of soil organic carbon and clover leaves,and relatedpriming effect. Soil Biology and Biochemistry,2015,80: 156-166.  
  [88] Zhou P,Li Y,Ren X E,Xiao H A,Tong C L,Ge T D,Brookes P C,Shen J L,Wu J S. Organic carbon mineralization responses to temperatureincreases in subtropical paddy soils. Journal of Soils and Sediments,2014,14( 1) : 1-9.  
  [89] Chevallier T,Hmaidi K,Kouakoua E,Bernoux M,Gallali T,Toucet J,Jolivet C,Deleporte P,Barthès B G. Physical protection of soil carbon inmacroaggregates does not reduce the temperature dependence of soil CO2emissions. Journal of Plant Nutrition and Soil Science,2015,178( 4) :592-600.  
  [90] Laganière J,Podrebarac F,Billings S A,Edwards K A,Ziegler S E. A warmer climate reduces the bioreactivity of isolated boreal forest soilhorizons without increasing the temperature sensitivity of respiratory CO2loss. Soil Biology and Biochemistry,2015,84: 177-188.  
  [91] Conant R T,Ryan M G,gren G I,Birge H E,Davidson E A,Eliasson P E,Evans S E,Frey S D,Giardina C P,Hopkins F M,Hyvnen R,Kirschbaum M U,F,Lavallee J M,Leifeld J,Parton W J,Megan S J,Wallenstein M D,Wetterstedt J  M,Bradford M A. Temperature and soilorganic matter decomposition rates-synthesis of current knowledge and a way forward. Global Change Biology,2011,17( 11) : 3392-3404.  
  [92] Xu W H,Li W,Jiang P,Wang H,Bai E. Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil.Scientific Reports,2014,4: 6512.  
  [93] Fierer N,Allen A S,Schimel J P,Holden P A. Controls on microbial CO2production: a comparison of surface and subsurface soil horizons. GlobalChange Biology,2003,9( 9) : 1322-1332.  
  [94] Davidson E A,Janssens I A,Luo Y Q. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology,2006,12( 2) : 154-164.  
  [95] Fang C M,Smith P,Moncrieff J B,Smith J U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature,2005,433( 7021) : 57-59.  
  [96] Fang C,Moncrieff J B,Gholz H L,Clark K L. Soil CO2efflux and its spatial variation in a Florida slash pine plantation. Plant and Soil,1998,205( 2) : 135-146.  
  [97] Giardina C P,Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature,2000,404( 6780) : 858-861.  
  [98] Dungait J A J,Hopkins D W,Gregory A S,Whitmore A P. Soil organic matter turnover is governed by accessibility not recalcitrance. GlobalChange Biology,2012,18( 6) : 1781-1796.  
  [99] Ma Y C,Piao S L,Sun Z Z,Lin X,Wang T,Yue C,Yang Y. Stand ages regulate the response of soil respiration to temperature in a Larixprincipis-rupprechtii plantation. Agricultural and Forest Meteorology,2014,184: 179-187.  
  [100] Franzluebbers A J,Haney R L,Honeycutt C W,Arshad M A,Schomberg H H,Hons F M. Climatic influences on active fractions of soil organicmatter. Soil Biology and Biochemistry,2001,33( 7 /8) : 1103-1111.  
  [101] Gershenson A,Bader N E,Cheng W X. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. GlobalChange Biology,2009,15( 1) : 176-183.  
  [102] Conant R T,Steinweg J M,Haddix M L,Paul E A,Plante A F,Six J. Experimental warming shows that decomposition temperature sensitivityincreases with soil organic matter recalcitrance. Ecology,2008,89( 9) : 2384-2391.  
  [103] Larionova A A,Yevdokimov I V,Bykhovets S S. Temperature response of soil respiration is dependent on concentration of readily decomposable C.Biogeosciences,2007,4( 6) : 1073-1081.  
  [104] Hamdi S,Chevallier T,Bernoux M. Testing the application of an agronomic concept to microbiology: A degree-day model to express cumulativeCO2emission from soils. European Journal of Agronomy,2012,43: 18-23.  
  [105] Besnard E,Chenu C,Balesdent J,Puget P,Arrouays D. Fate of particulate organic matter in soil aggregates during cultivation. European Journalof Soil Science,1996,47( 4) : 495-503.  
  [106] Razafimbelo T M,Albrecht A,Oliver R,Chevallier T,Chapuis-Lardy L,Feller C. Aggregate associated-C and physical protection in a tropicalclayey soil under Malagasy conventional and no-tillage systems. Soil and Tillage Research,2008,98( 2) : 140-149.  
  [107] Thornley J H M,Cannell M G R. Soil Carbon Storage Response to Temperature: an Hypothesis. Annals of Botany,2001,87( 5) : 591-598.  
  [108] Marschner B,Bredow A. Temperature effects on release and ecologically relevant properties of dissolved organic carbon in sterilised andbiologically active soil samples. Soil Biology and Biochemistry,2002,34( 4) : 459-466.  
  [109] Hamdi S,Moyano F,Sall S,Bernoux M,Chevallier T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies inrelation to incubation methods and soil conditions. Soil Biology and Biochemistry,2013,58: 115-126.

原文出处:黄锦学,熊德成,刘小飞,杨智杰,谢锦升,杨玉盛. 增温对土壤有机碳矿化的影响研究综述[J]. 生态学报,2017,(01):12-24.
相关内容推荐
相关标签:
返回:农艺学论文