摘 要: 目的 研究铁过载对原代神经元发生衰老的影响。方法 取大鼠原代中脑腹侧神经元进行体外培养,随机分为对照组和实验组,实验组给予100μmol/L枸橼酸铁铵(FAC)处理24 h,对照组用不含FAC的培养液进行处理,通过检测细胞衰老相关β-半乳糖苷酶活性评估细胞衰老状况。结果 与对照组相比,在100μmol/L FAC作用24 h时,实验组原代神经元衰老相关β-半乳糖苷酶活性增加(t=18,P<0.05)。结论 铁过载可诱导原代神经元发生衰老。
关键词 : 神经元;铁;细胞衰老;
Abstract: Objective To investigate the effect of iron overload on the senescence of primary neurons. Methods Primary ventral midbrain neurons of rats were cultured in vitro and were randomly divided into control group and experimental group. The experimental group was treated with ferric ammonium citrate(FAC)(100 μmol/L) for 24 h, and the control group were treated with the medium without FAC. Cell senescence was evaluated based on the activity of β-galactosidase associated with cell senescence. Results Compared with the control group, the experimental group had a significant increase in the activity of β-galactosidase associated with cell senescence after being treated by 100 μmol/L FAC for 24 h(t=18,P<0.05). Conclusion Iron overload can induce the senescence of primary neurons.
Keyword: neurons; iron; cell senescence;
帕金森病是世界第二大神经退行性疾病,典型病理特征是黑质致密带多巴胺能神经元进行性丢失,α-突触核蛋白的聚集和铁沉积[1,2,3]。越来越多的证据表明铁沉积会导致多巴胺能神经元死亡,铁过载是神经元死亡的诱因而非结果[4,5]。除了可以通过氧化损伤途径促进多巴胺能神经元死亡,大量的铁可以促进α-突触核蛋白的表达[6],也可从蛋白翻译后水平影响其磷酸化[7,8],促进蛋白聚积,进而损伤神经元[9,10]。随着年龄增加,多种器官发生铁聚积,脑内铁沉积随之不断加剧[11],过量铁导致的氧化水平升高又会进一步引发铁蛋白释放[12]。细胞衰老是细胞无法进入细胞周期而处于停滞状态,是防止细胞不受调控持续增殖的机制,主要表现为炎性因子的分泌、β-半乳糖苷酶活性增加以及衰老相关分泌表型[13]。随着年龄的增加,衰老细胞在体内逐渐累积,衰老的细胞部分丧失生理活性,影响机体正常生理功能。在主要的神经退行性疾病如阿尔茨海默病、帕金森病以及亨廷顿症病人脑内均发现了衰老的神经元和胶质细胞[14,15]。在疾病状态下的神经元也会出现衰老现象,据文献报道,在γ射线诱导的小鼠胚胎成纤维细胞衰老模型中,衰老细胞的铁水平是正常细胞的30倍之多[16]。另有研究发现,神经毒素百草枯可诱发与帕金森病相关的细胞衰老和神经病理特征[17]。最近有研究表明,诱导胚胎干细胞分化的多巴胺能神经元也观察到衰老表型[18]。已有实验证实,衰老细胞内铁含量明显升高,衰老导致的铁摄取和储存异常会影响铁介导的细胞死亡过程[11,16],衰老的细胞若不及时清除,会进一步损伤周围细胞[19]。为了探讨铁过载能否引发神经元衰老进而引发死亡丢失,本研究用枸橼酸铁铵(FAC)对原代神经元进行处理,检测其衰老发生情况。
1 、材料和方法
1.1、 实验材料
FAC(Sigma),胎牛血清(依科赛(澳洲源)),SA-β-Gal染色试剂盒(CST,9860S),DMEM高糖培养液(Gibco, 1210038)以及DMEM/F12培养液(Hyclone, SH30023.01),D-多聚赖氨酸、B27(Gibco),β-阿糖胞苷、青链霉素混合液、0.01 mol/L磷酸盐缓冲液(PBS)(索莱宝)和倒置显微镜(OLYMPUS,IX73)。
1.2、 实验方法
1.2.1、 中脑腹侧原代神经元培养
将深度麻醉的孕12~14 d的Wistar大鼠用医用乙醇喷洒消毒后,用手术剪沿大鼠的腹中线剪开至腹腔完全暴露,用镊子取出串珠样胚胎,放在预冷的DMEM培养液中,迅速转移至超净工作台上。用尖镊将胎鼠剥离出来,先在解剖显微镜下将中脑组织块取出转移至新鲜的DMEM培养液中,再在镜下修剪掉多余组织块和血管膜,保留蝴蝶状腹侧,加入适量胰蛋白酶,置37 ℃培养箱中孵育消化,5 min后加入终止液终止消化。用1 mL移液枪轻柔地吹打尽量使组织块分散,静置片刻后吸取上清至50 mL离心管中,重新加入新鲜的DMEM培养液5 mL,重复上述步骤3次。将上清以1 000 r/min离心5 min后弃上清,加入含有B27的DMEM/F12完全培养液,轻轻吹打成均匀的单细胞悬液,接种到12孔板上,每孔1×105个细胞,放入细胞培养箱中培养,1 d后更换一半培养液,此后每隔2 d更换新鲜培养液,7 d后成熟的神经元可用于后续实验。经β-阿糖胞苷处理,神经元纯度达90%以上,符合实验要求。
1.2.2 、实验分组及处理
将细胞随机分为对照组和实验组。实验组细胞加入100 μmol/L的FAC作用24 h, 对照组细胞用不含FAC的低血清培养液进行处理。
1.2.3、 细胞衰老相关β-半乳糖苷酶活性检测
应用SA-β-Gal染色试剂盒检测细胞衰老相关β-半乳糖苷酶活性。FAC处理24 h后,用0.01 mol/L PBS润洗细胞2次,每次30 s, 每孔细胞加入1 mL固定液,室温固定15 min, 用0.01 mol/L PBS冲洗细胞2次,每次30 s, 弃掉洗液,每孔加入1.5 mL染色液,用封口膜密封细胞培养板防止染液蒸发,置37 ℃恒温箱中孵育过夜。用0.01 mol/L PBS润洗细胞2次,每次30 s, 在奥林巴斯倒置显微镜明场下观察并获取图像,阳性细胞显示为亮蓝色。
1.3、 统计学分析
应用GraphPad Prism软件进行统计学分析。计量资料结果以x?±s表示,两独立样本比较采用t检验。以P<0.05表示差异有统计学意义。
2、 结 果
与对照组相比较,实验组细胞衰老相关β-半乳糖苷酶阳性染色明显增强(图1),对照组着色细胞比例为(2.077±0.440)%,实验组着色细胞比例为(25.200±1.164)%,两组比较差异具有统计学意义(n=3,t=18,P<0.05)。提示100 μmol/L FAC作用于原代神经元24 h,细胞衰老相关β-半乳糖苷酶活性增加,表明100 μmol/L FAC可以诱导原代神经元发生衰老。
3 、讨 论
铁是维持生命活动的关键微量金属元素之一,在中枢神经系统中发挥重要作用,参与脑内线粒体呼吸、轴突髓鞘化以及神经递质的形成[12]。铁作为活泼金属,也可以催化多种生化反应,增加氧化应激,过量的活性氧损伤细胞膜、核酸及蛋白结构,引发细胞毒性[20]。枸橼酸是铁的天然螯合剂,枸橼酸铁为枸橼酸与铁离子形成的铁盐,是美国食品和药物管理局(FDA)批准的补铁药剂[21]。本实验所用的FAC是枸橼酸铁更具溶解性的形式,添加FAC可模拟高铁环境,以探讨铁过载对神经元细胞衰老的影响。
对于体外培养细胞的衰老研究,衰老相关的β-半乳糖苷酶的活化是常用的生物学特征[22,23]。β-半乳糖苷酶是溶酶体水解酶,通常在pH值为4时表现出活性;而在衰老的细胞中,pH值为6时有活性,利用β-半乳糖苷酶底物进行染色,就能从正常细胞中区分出衰老细胞[24]。本实验采用100 μmol/L FAC处理原代神经元24 h,观察到β-半乳糖苷酶的阳性染色明显增强,提示细胞衰老的发生。
越来越多的证据表明,铁稳态失衡促进神经退行性疾病的发展[25,26,27,28],铁沉积是帕金森病一个主要的病理特征,也是人们普遍认为的发病诱因。有研究证实,细胞内铁过载会增加氧化还原水平[29,30],促进α-突触核蛋白的聚积,进而发挥细胞毒性作用,如二价铁可以通过与α-突触核蛋白mRNA的C端ASP-121、Asn-122、Glu-123位结合,在转录水平促进α-突触核蛋白表达,也可以在转录后水平参与蛋白磷酸化等修饰过程,促进蛋白聚集发挥细胞毒性作用[31,32],并且α-突触核蛋白寡聚过程产生活性氧是铁依赖性的[33]。铁过载增加细胞内氧化应激水平可能是诱导衰老的重要机制。本实验结果表明,铁过载会诱发神经元衰老,这为后续进行神经元变性死亡研究提供了新的思路。但处于衰老状态的神经元细胞是通过何种通路逐渐死亡丢失,神经元衰老与目前已知凋亡、坏死和铁死亡之间是否存在因果或先后关系,衰老在神经元变性死亡过程中的具体机制还有待进一步的研究探讨。
图1 光学显微镜下衰老相关β-半乳糖苷酶染色检查
A:对照组(20倍);B:实验组(20倍);C:对照组(40倍);D:实验组(40倍)。
参考文献
[1]HE N Y,LANGLEY J,HUDDLESTON D E,et al.Increased iron-deposition in lateral-ventral substantia nigra pars compacta: apromising neuroimaging marker for Parkinson's disease[J].Neurolmage Clinical,2020,28: 102391.
[2]AN H D,ZENG X Y.NIU T F,et al. Quantifying iron deposition within the substantia nigra of Parkinson's disease by quantitative suscepibility mapping[J]. Journal of the Neurological Sciences. 2018,386:46-52.
[3]PRZEDBORSKI S.The two-century ourney of Parkinson disease research[J] Nature Reviews Neuroscience,2017,18(4).251-259.
[4]NDAYISABAA,KAINDLSTORFER C,WENNING G K.Iron in neurodegeneration-cause or consequence[J]?Frontiers in Neuroscience,2019,13:180.
[5]PIETRACUPA S,MARTIN-BASTIDA A,PICCINI P.Iron metabolism and its detection through MRI in parkinsonian disorders:a systematic review[J] Neurological Sciences 2017,38(12):2095-2101 .
[6]ZHOU Z D,TAN E K lron regulatory protein(IRP)-iron responsive element(IRE )signaling pathway in human neurodegenerative diseases[J] Molecular Neurodegeneration,2017,12(1):75 .
[7]TAKAHASHI M,KO L W,KULATHINGAL J,et al. Oxidative stress-induced phosphorylation,degradation and aggregation ofa-synuclein are linked to upregulated CK2and cathepsin D[J] European Journal of Neuroscience,2007 ,26(4):863-874.
[8]LINGOR P,CARBONI E,KOCH J C Alpha-synuclein and iron:two keys unlocking Parkinson's disease[J].Journal of Neural Transmission(Vienna Austria:1996),2017,124(8):973-981.
[9]JIANG H,SONG N,JIAO Q,et al.ron pathophysiology in Parkinson diseases[J].Advances in Experimental Medicine and Biology,2019,1173:45-66 .
[10]LI W J,JIANG H,SONG N,et al.Dose-and time-dependent alpha-synuclein aggregation induced by ferric iron in SK-N-SHells[J]. Neuroscience Bulletin,.2010,26(3):205-210 .
[11]WARD R J.,ZUCCAF A,DUYN J H,et al.The role of iron in brain ageing and neurodegenerative disorders[J].The Lancet Neurology ,2014,13(10): 1045-1060.
[12]ZUCCA F A.SEGURA-AGUIL AR J,FERRARI E,et al.Interactions of iron,dopamine and neuromelanin pathways in brain aging and Parkinson's disease[J].Progress in Neurobiology.2017,155:96-119.
[13]BAKER D J,CHILDS B G,DURIK M,et al.Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan[J]. Nature ,2016,530(7589):184-189.
[14]BAKER D J,PETERSEN R C.Cellular senescence in brain aging and neurodegenerative diseases.evidence and perspectives[J] The Journal of Clinical Investiation,2018, 128(4):1208-1216 .
[15]KANG C,XU Q K,MARTIN T D,et al.The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4[J] Science(New York,N Y),2015,349(6255);aaa5612.
[16]MASALDAN S,CL ATWORTHY S A S,GAMELL C,et al.lron accumulation in senescent cells is coupled with impaired frritinophagy and inhibition of ferroptosis[J] Redox biology,2018,14:100-115 .
[17]CHINTA S J,WOODS G,DEMARIA M,et al.Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson's disease[J].Cell reports,2018,22(4):930-940.
[18]RIESSLAND M,KOLISNYK B,KIM T W,et al.Loss of SATB1induces p21-dependent cellular senescence in postmitotic dopaminergic neurons[J] Cell Stem Cell,2019,25(4):514-530.e8.
[19]NELSON G,WORDSWORTH J,WANG C F,et al.A senescent cell bystander effect:senescence-induced senescencel[J.Aging Cell,2012.11(2)-.345-349.
[20]YOUL H,LI F,WANG L,et al.Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson's disease[J] Neuroscience,2015,284:234-246
[21]WANG H B,LI Z,NIU J L.et al.Antiviral effects of frric ammonium citrate[J] Cell Discovery,2018,4:14 .
[22]MARTINEZ-CUE C,RUEDA N.Cellular senescence in neurodegenerative diseases[J].Frontiers in Cellular Neuroscience ,2020,14:16.
[23]MATTSON M P,ARUMUGAM T V. Hallmarks of brain aging:adaptive and pathological modification by metabolic states[J].Cell Metabolism,.2018.27(6)-1176-1199.
[24]NOREN HOOTEN N,EVANS M K. Techniques to induce and quantify cellular senescence[J]. Journal of Visualized Experiments,2017(123);55533
[25]XU J Z,JIAZ H,KNUTSON M D,et al.lmpaired iron status in aging research[J] International Journal of Molecular Sciences,2012,13(2).2368-2386.
[26]SHI L Q,HUANG C,LUO Q H,et al.The association of iron and the pathologies of Parkinson's diseases in MPTP/MPP+-induced neuronal degeneration in non-human primatesand in cell culture[J] Frontiers in Aging Neuroscience,2019.11:215
[27]WANG T,XU S F,FAN Y G,et al.lron pathophysiology in Alzheimer's diseases[J] Advances in Experimental Medicine and Biology,2019.1173:67-104.
[28]BAGWE-PARAB S,KAUR G. Molecular targets and therapeutic interventions for iron induced neurodegeneration[J] .Brain Research Bulletin,2020,156:1-9 .
[29]ABEYAWARDHANE D L,LUCAS H R.lron redox chemistry and implications in the Parkinson's disease brain[J].Oxidative Medicine and Cellular Longevity ,2019,2019: 460970
[30]ABEYAWARDHANE D L,FERNNDEZ R D,MURGAS CJ,et al.ron redox chemistry promotes antiparallel oligomerization ofa-synuclein[J] .Journal of the American Chemical Society,2018, 140(15):5028-5032.
[31]DAVIES P,MOUALLA D,BROWN D R. Alpha-synuclein is a cellular frrireductase[J].PloS One,2011,6(1):e15814 .
[32]OSTREROVA-GOLTS N,PETRUCELLI L,HARDY J,et al.The A53Talpha-synuclein mutation increases iron-dependent aggregation and toxicity[J]. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience,2000,20(16):6048-6054 .
[33]UGALDE C L,LAWSON V A,FINKELSTEIN D I,et al.The role of lipids ina-synuclein misfolding and neurotoxicity[J.The Journal of Biological Chemistry,.2019,294(23):9016-902
海马是大脑中被广泛研究的热点脑区之一,海马CA1和CA3神经元是实验研究中常用的两类神经元且均匀的位于清晰易见的细胞带上,与一些生理行为学和神经系统疾病研究相关联。CA1神经元具有明显的海马信号输出环路,在长时程记忆和相对空间任务及行为学上有重要...
目前,世界各国均面临着严重的人口老龄化,2050年约三分之一的中国人口年龄将超过60岁。衰老是人类疾病最大的危险因子。随着年龄的增长,许多与衰老相关的疾病如肿瘤、糖尿...
甲状腺是重要的内分泌器官,主要功能是合成和释放甲状腺激素,对于细胞的增殖和分化、机体的代谢和生长发育都具有重要的作用。正常甲状腺激素的维持有赖于甲状腺激素合成和代谢过程中需要的多种微量元素,尤其是碘、硒、铜、铁、锌。其中碘和硒对于甲状腺激...
随着社会发展,地铁、桥梁、涵洞等工程建设越来越多,需要进行大量的沉箱作业。沉箱作业时人体处于空气加压所致的高气压环境,压力往往超过0.2MPa,作业人员呼吸的是高气压空气,返回时也需要按照一定减压方案以保证安全。这种异常环境将对人体生理指标...
代谢组学在衰老的研究中正处在一个蓬勃的发展期, 有着良好的发展前景。这其中也面临着较大的困难, 如检测技术的不同, 样品的处理方式相差较大, 统计方法、结果标准化不一等。...
本研究发现激活DMH区域的谷氨酸能神经元和GABA能神经元均导致了显着的焦虑样行为和心率的显着上升。反之, 抑制这一区域的谷氨酸能神经元和GABA能神经元均引起了焦虑样行为和心率的显着下降。...
铁(iron)作为植物生长发育过程中必需的矿质营养元素,是最早被发现的植物必需营养元素。铁作为一种重要的微量元素,在人类的神经系统发育中发挥着极为重要的作用,与一些神经系统疾病密切相关。在人体的发育过程中需要各种各样的营养来维持机体正常的生理...
基底核在调节机体运动和认知功能方面具有极其重要的作用[1].纹状体是基底核的主要核团,参与许多学习记忆相关的认知功能[2],其广泛接受大脑皮质、丘脑和中脑的兴奋性传入[3].纹状体各区接受不同的信息,意味着各区有不同的生理功能[4].纹状体中有许多神经肽...
人的大脑有几百亿的神经元,大部分神经元是与生俱来的。如果大脑损伤了,比如脑中风或得了老年痴呆症等神经退行性疾病,大脑神经元就会死亡,与这些神经元相关的脑功能就会丧失,如何修复大脑是一个世界性难题。以脑中风为例,在过去的几十年里,全世界研究机...
突触可塑性普遍存在于中枢神经系统中,与未成熟神经系统的发育及成熟后的学习、记忆和脑的其他高级功能活动密切相关。激素则是内分泌系统发挥调节作用的重要生物活性物质,随着神经-内分泌-免疫网络系统的研究表明,有些激素也是神经系统中不可或缺的调...
1.将微信二维码保存到相册
2.打开微信扫一扫从相册识别
1.点击下面按钮复制QQ号
3008635932
2.打开QQ→添加好友/群
粘贴QQ号,加我为好友