真核细胞的细胞分裂周期是一个复杂的级联事件,以细胞复制为顶点[28].从一种调节状态到另一种开始的这些转变,是它们自身的反馈控制,决定细胞物理状态的底物修饰。由遗传和生化分析阐述的基本机制,已经在以下生物体中保守,如酵母菌、非洲爪蟾蜍、蛤蚌、海星受精卵、培养的人类细胞和高等植物[29].
两个重要转变控制点存在细胞分裂周期 G1/ S 和 G2/ M边界。M 期被描述为激酶的激活( MPF,成熟促进因子,当注入爪蟾卵细胞时,以诱导细胞分裂的能力命名) ,其中包含两个组件子单元。一个是 p34cdc2蛋白( S. 非洲粟酒基因 cdc2 或同族体的产物,S. 啤酒的 CDC28) ,其能使体内的酪蛋白及组蛋白 H1 磷酸化和在有丝分裂有最大的激酶活性。另一个是细胞周期蛋白,其浓度在细胞分裂周期之间波动。它在细胞间期逐步地累积,形成 p34cdc2复合体和激活蛋白激酶; 在有丝分裂中降解,灭活激酶和 MPF 的活性。因此,细胞周期蛋白 -cdc2 / CDC28 ( MPF) 系统就像一个振荡器或者"生物钟",在有丝分裂时重设到细胞间期和其似乎组成一个通用的细胞分裂循环的"引擎"[29].现在我们知道细胞周期蛋白的整个家族,p34cdc2周期性地把调节细胞分裂周期进程的蛋白激酶活性联系起来造成连续波动,在植物和动物的细胞分裂周期中,cdc2 关联基因的确切种类得到不同表达。
2. 1 环腺苷酸( cAMP) 的作用 众所周知,cAMP 在细胞的调节中起着关键作用[30],可影响昼夜振荡器和p34cdc2---细胞周期蛋白通路之间的耦合,( 可能和其他参与者一致) 参与细胞分裂周期活动的阀门效应器到昼夜周期的特定相位。
甚至,cAMP 似乎有能力控制细胞分裂周期进程中某些限速步骤,刺激一些细胞的增值,但在其他细胞,却有相反的效果,或一点效果都没有[31,32].在很多细胞类型中,cAMP的短暂增加与 G1/ S 和 G2/ M 边界的细胞周期转变有关。酵母菌的遗传试验和哺乳动物的药学研究[30,33]已经显示,cAMP 水平的一过性升高和接着下降,对于 DNA 的合成和MPF 的诱导酪氨酸-脱磷酸作用激活的启动是有必要的[34],第二次 cAMP 剧增与完成相关,从有丝分裂中退出[35].细胞分裂周期不同相位中,cAMP 浓度的相似变化已在裸藻中出现[36].这些信号分别与 p34cdc2- p60 ( G1细胞周期蛋白) 蛋白激酶复合物和 p34cdc2- 细胞周期蛋白 B ( 有丝分裂细胞周期蛋白) 蛋白激酶复合物功能相一致。
因此,在动物和酵母菌中,cAMP 浓度波动代表细胞分裂周期进程,信号转导的重要环节。在真核细胞里,AC 信号通路的转录调节下刺激受 cAMP-响应核因子家族调整。这些因子包含基本的结构域/亮氨酸拉链模序和 cAMP-反应元件( CRE) 二聚体。CRE-结合蛋白( CREB) 的功能由 cAMP 依赖性蛋白激酶的磷酸化作用调整。
2. 2 环腺苷酸( cAMP) 对细胞分裂节律的干扰 如果周期性的信号在裸藻细胞分裂节律的产生中起作用,通过昼夜振荡器,干扰或覆盖 cAMP 水平的控制这一条件应该在下游活动中引起扰乱[18].用了这种药( 图 6A) ,依靠细胞分裂周期的相位,引起细胞分裂周期的缩短或加长,通过外源性cAMP,其振荡的干扰导致了来自昼夜定时器细胞分裂周期的暂时解耦合。当在 CT16 和 CT22 之间给予 cAMP 时,能观察到前进; 当在 CT03 和 CT09 之间给予 cAMP 时,能获得下一个同步分裂步骤( 相当于 9 小时) 的延迟。在 CT06-08 和 CT18-20 时获得最大效应,相当于内源性 cAMP 水平是最低的时间。在昼夜时间已经获得细胞分裂周期的最大 + ΔΦs 或者- ΔΦs,也可得到计量反应曲线。仅仅 1 nM cAMP 足以干扰细胞分裂周期运输。与细胞分裂周期的细胞周期蛋白生物钟相比,不像可兴奋组织,其 cAMP 的确能相位漂移信号输出节律[37,38],昼夜振荡器不用通过添加 cAMP 来重置: 分裂节律回到原始位相( 图 6B) .
随着 cAMP 的注入,在生长曲线中观察到的细胞分裂步骤 ΔΦ ,反映细胞分裂周期进程速率的真实变化。通过流式细胞术测量细胞 DNA 含量提示[18],在 CT06 - 08 注入 cAMP延迟穿过 S 期,可能穿过 M 期( 图 7A) .若在 CT18 - 20 增加,cAMP 加速 G2/ M 过渡( 图 7B) .细胞分裂节律的这些效应只是短暂的: 48h 后,和未干扰的控制一样,分裂出现在相同的相位( 图 6B) .
通过检测减小 cAMP 振荡振幅的药物效应,或者保持cAMP 在某一水平,这样所有 cAMP 的受体就能永久饱和,证明在细胞分裂周期进程中 cAMP 水平的内源性昼夜节律变化有足够的振幅产生类似的效应: 我们希望这种药用来阻止分裂节律性的表达。甚至 AC 的激活剂,cAMP 类似物毛喉素使cAMP 维持在异常的高水平[21],连续黑暗里,增加不同步 ZC突变株细胞,出现细胞群的快速失调和最终失去分裂节律性[18].
这些发现指出,尽管裸藻中 cAMP 信号不重置昼夜振荡器( 因此 cAMP 不大可能代表生物钟的"齿轮") ,但它们的确调节细胞分裂周期进程,从振荡器作用下游---正如 Zatz[39]所提出的小鸡松果体细胞,可能存在并行通路。
2. 3 下游通路: 环腺苷酸( cAMP) 依赖性蛋白激酶 在振荡的 cAMP 系统和细胞分裂周期之间,什么是连接环? 根据应用时 CT 的通路,无论什么是细胞周期受到影响的调节通路,它必须能解释相同信号是如何干扰不同的通路。一种可能性,是 cAMP 通过不同的"受体"表现为有选择性地调整两个调节通路中的一个或另一个。
我们已经证明,裸藻 ZC 突变株包含 cAMP 依赖性蛋白激酶( cPKA 和 cPKB) 两个类型,对于 cAMP 和几个 cAMP 类似物来说,它们有不同的密切关系[40].发现细胞提取物包含两个 cAMP-结合蛋白,一个与 cAMP 有很高的亲和力( ( Kd 值为10nM 和 19nM) ,一个能通过 DEAE-纤维素色谱分析法分离。
用肯普肽( 激酶底物肽) 作为底物( 从哺乳动物细胞中,由cAMP 依赖性激酶特异性磷酸化) 分析蛋白激酶。用 DEAE-纤维素色谱分析法部分提纯 cAMP 后可观察到激酶活性的刺激。分辨两个活性的峰值相当于两个不同的 cAMP 类似物特异性酶。因此,cAMP 依赖性激酶类似于动物细胞,通过靶蛋白的磷酸化,植物细胞中的 cAMP 信息传递可继续进行。
在细胞分裂周期进程的控制中,通过 cAMP 类似物提供工具给它们各自作用的研究,抽出裸藻中识别的两个激酶的差异激活。我们断定,cAMP 或 cAMP 类似物的最小剂量可引起在人工白天或黑夜中分裂节律的 ΔΦs[18].在 CT06 -08和 CT18 -20 获得的不同结果提示,由两个不同的 cAMP 激酶来介导不同 CTs 时 cAMP 的效应。因此,选择性激活 cPKA的 8-苄氨基嘌呤-cAMP( 8-BZA-cAMP) 在 CT06 -08 增加时,诱导-ΔΦs,但在 CT18 - 20 时没有效应。相反地,特异激活cPKB 的 8-( 4-硫代氯苯基) -cAMP( 8-CPT-cAMP) 在 CT18 - 20增加时,诱导 + ΔΦs 和分裂节律性的减少,但在 CT06 -08 增加时,不干扰分裂节律。
cAMP,8-BZA-cAMP,8-CPT cAMP 与 6-MBT-cAMP 的剂量之间也有关联,引起在 CT06 -08 时细胞分裂周期和 cPKA类似物 Ka值的干扰,结果提示 cPKA 在这些 CTs 时,介导cAMP 的延迟效应。同样地,相同核苷酸的剂量之间也有关联,引起在 CT18 - 20 时细胞分裂周期和 cPKB 类似物 Ka值的干扰,结果表明在 CT18 - 20 时 cPKB 介导 cAMP 的加速效应。这些发现简单的解释是这些激酶是在细胞分裂周期不同阶段表达,在哺乳动物细胞中,被描述为Ⅰ型和Ⅱ型 cAMP 依赖性激酶。
3. 小结
藻类比如纤细裸藻已经作为试验模型,被用来了解昼夜节律记时的作用机制,已经超过了半个世纪,是因为它们方便利用,易于测量其生理特征以反映昼夜节律的输出信号。另外,藻类的代谢轮廓分析日益重要,因为它们能提供丰富多样的化合物,对于食品、医药产业、生物燃料和公共卫生等方面具有很大潜在的经济价值[41].生物钟使裸藻能维持近似1 小时的昼夜节律,其主要通过接受光信号,经过一系列的信号转导途径,在昼夜振荡器中不断地产生振荡,最后通过输出途径控制基因的节律性表达等; 但仍存在局限性: 高通量组学筛查经常遇到的问题是只能鉴别基因和蛋白,而不能知道其功能。
很多的功能分析会降低相关信息量,比如在昼夜时间的系列研究中,由于不完善的注释而很少使用。通过对裸藻昼夜节律深入的研究,对揭示生物钟的本质、生物进化的分子机制等具有重要意义,可为各种动植物包括人类的生产实践与医疗保健等方面提供可靠的理论依据。
持续的系膜增殖和系膜基质增多可导致不可逆性肾小球硬化〔1〕,抑制系膜细胞增殖是增殖性肾小球疾病重要的治疗策略。S100A4是S100基因家族成员,是一种钙结合蛋白〔2〕,参与肾组织内上皮-间充质转分化过程〔3〕,其对肾小球系膜细胞增殖是否有影响尚未见报...
肝脏细胞色素P450(cytochromeP450,CYP450)氧化酶又称混合功能氧化酶和单加氧酶,广泛存在于动物、植物、微生物的各种组织中,是负责大多数临床药物、环境致癌物、外源毒物及内源活性物质生物转化的主要酶系统,具有重要的药理、生理及病理学意义。CYP450...
NSCs是一类具有多向分化潜能和自我更新能力的细胞,NSCs能够增殖分化为神经元、星形胶质细胞和少突胶质细胞等,广泛存在于中枢神经系统内。1992年Reynolds和Weiss最先从成年鼠脑纹状体中分离出NSCs,他们成功地在体外通过表皮生长因子的诱导分离出增殖的NSCs...
脑干对脊髓背角伤害性信息的传入具有下行抑制性调控作用,电刺激中缝大核(nucleusraphemagnus,NRM)或者于NRM内注射谷氨酸或5-羟色胺(5-hydroxytryptamine,5-HT)等受体激动剂,可以对由伤害性...
食欲素(Orexins,Ox)是由下丘脑分泌的能够促进食欲的一种神经肽,又称下丘脑分泌素,主要通过激活7次跨膜G蛋白偶联受体(Gproteincoupledreceptors,GPCRs)-Ox1型受体(orexinreceptortype1,OX1R)与Ox2型受体(orexinre-ceptortype2,OX2R)发挥其...
药物成瘾(drugaddiction)又称药物依赖(drugdependence)或药瘾,指长期重复使用某种药物而形成的一种慢性、复发性脑病,表现为停用药物后产生戒断症状(withdrawalsymptom)、强迫性药物寻求,以及对药物使用丧失控制能力等.药物成瘾与遗传(以...
近年来对腹膜淋巴孔的研究已引起众多学者的关注,腹膜淋巴孔可能与腹腔感染致全身炎症反应综合症(SIRS)、相关疾病所致肝硬化腹水的转归、免疫调节、肿瘤细胞的转移和扩散等均有密切关联。一直以来,对腹膜淋巴孔调控机制的研究都是研究的重点及焦点。最早...
Ghrelin是生长激素促分泌素受体(growthhor-monesecretagoguereceptor,GHS-R)的内源性配体,主要由胃黏膜组织中的泌酸细胞分泌。Ghrelin的生物学作用十分广泛,可促进生长激素分泌;调节摄食和能量代谢;刺激胃动力和胃酸分泌;调节心血管功能等。新...
临床上经常观察到抑郁和疼痛两种疾病的共病现象。疼痛特别是慢性痛,经常伴随抑郁症状的存在,而抑郁症患者也会伴发腰背痛、关节痛等多种躯体症状。阐明两者共病的机制对于临床慢性痛的治疗有重要的意义。近年来,在临床和实验室研究中均发现抑郁会降低个体...
引言疲劳是日常工作生活中的一种普遍现象,但是疲劳的概念却很复杂。疲劳涉及生理、心理等多方面的因素,是一个多维的概念,虽然至今还没有统一的疲劳定义,但仍有一些被大家所认可的描述及判定标准。简单来说,可以认为疲劳是由长时间的体力或脑力劳动所导...