医学遗传学论文

您当前的位置:学术堂 > 医学论文 > 基础医学论文 > 医学遗传学论文 >

表观遗传学的修饰与染色质重塑(3)

来源:未知 作者:chunt
发布于:2017-04-05 共16250字
  4小结
  
  本综述基于中国科学技术大学生命科学学院的成员近年来在表观遗传学方面的研究进展进行了回顾,包括了经典的表观遗传学修饰调控,如组蛋白修饰和DNA甲基化,又加入了最新的RNA表观遗传学和植物表观遗传学的研究内容,从结构生物学和分子生物学的角度回顾了研究进展。表观遗传学作为世界上转录调控的一个热点,其进展日新月异。相信,未来冷冻电子显微镜等新技术的进一步发展,将为表观遗传调控和染色质修饰相关的大复合物研究提供更广阔的前景。
  
  参考文献
  
  1  Ullah  M,  Pelletier  N,  Xiao  L,  et  al.  Molecular  architecture  of  quartet  MOZ/MORF  histone  acetyltransferase  complexes.  Mol  Cell  Biol,2008, 28: 6828-6843
  2  Qiu  Y,  Liu  L,  Zhao  C,  et  al.  Combinatorial  readout  of  unmodified  H3R2  and  acetylated  H3K14  by  the  tandem  PHD  finger  of  MOZreveals a regulatory mechanism for HOXA9 transcription. Gene Dev, 2012, 26: 1376-1391
  3  Xiong  X  Z,  Panchenko  T,  Yang  S,  et  al.  Selective  recognition  of  histone  crotonylation  by  double  PHD  fingers  of  MOZ  and  DPF2.  NatChem Biol, 2016, 12: 1111
  4  Qin  S,  Jin  L,  Zhang  J  H,  et  al.  Recognition  of  unmodified  histone  H3  by  the  first  PHD  finger  of  Bromodomain-PHD  finger  protein  2provides insights into the regulation of histone acetyltransferases monocytic leukemic zinc-finger protein (MOZ) and MOZ-related factor(MORF)。 J Biol Chem, 2011, 286: 36944-36955
  5  Liu, L, Qin, S, Zhang, J H, et al., Solution structure of an atypical PHD finger in BRPF2 and its interaction with DNA.J Struct Biol,2012180: 165-173
  6  Shen  W  Q,  Xu  C,  Huang  W,  et  al.  Solution  structure  of  human  Brg1  bromodomain  and  its  specific  binding  to  acetylated  histone  tails.Biochemistry-Us, 2007, 46: 2100-2110
  7  Huang  H  D,  Zhang  J  H,  Shen  W  Q,  et  al.  Solution  structure  of  the  second  bromodomain  of  Brd2  and  its  specific  interaction  withacetylated histone tails. Bmc Struct Biol, 2007, 7: 57
  8  Liu Y, Wang X Q, Zhang J H, et al. Structural basis and binding properties of the second bromodomain of Brd4 with acetylated histonetails. Biochemistry-Us, 2008, 47: 6403-6417
  9  Sun H B, Liu J X, Zhang J H, et al. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histoneH3 and H4. Biochem Bioph Res Co, 2007, 358: 435-441
  10  Ng S S, Yue W W, Oppermann U, et al. Dynamic protein methylation in chromatin biology. Cell Mol Life Sci, 2009, 66: 407-422
  11  Heintzman  N  D,  Hon  G  C,  Hawkins  R  D,  et  al.  Histone  modifications  at  human  enhancers  reflect  global  cell-type-specific  geneexpression. Nature, 2009, 459: 108-112
  12  Santos-Rosa H, Schneider R, Bannister A J, et al. Active genes are tri-methylated at K4 of histone H3. Nature, 2002, 419: 407-411
  13  Stewart  M  D,  Li  J  W,  Wong  J  M.  Relationship  between  histone  H3  lysine  9  methylation,  transcription  repression,  and  heterochromatinprotein 1 recruitment. Mol Cell Biol, 2005, 25: 2525-2538
  14  Li  H  T,  Ilin  S,  Wang  W  K,  et  al.  Molecular  basis  for  site-specific  read-out  of  histone  H3K4me3  by  the  BPTF  PHD  finger  of  NURF.Nature, 2006, 442: 91-95
  15  Xu C, Min J R. Structure and function of WD40 domain proteins. Protein Cell, 2011, 2: 202-214
  16  Collins  R  E,  Northrop  J  P,  Horton  J  R,  et  al.  The  ankyrin  repeats  of  G9a  and  GLP  histone  methyltransferases  are  mono-  anddimethyllysine binding modules. Nat Struct Mol Biol, 2008, 15: 245-250
  17  Yun M Y, Wu J, Workman J L, et al. Readers of histone modifications. Cell Res, 2011, 21: 564-578
  18  Declais A C, Lilley D M J. New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr Opin StrucBiol, 2008, 18: 86-95
  19  Samara N L, Wolberger C. A new chapter in the transcription SAGA. Curr Opin Struc Biol, 2011, 21: 767-774
  20  Bian  C  B,  Xu  C,  Ruan  J  B,  et  al.  Sgf29  binds  histone  H3K4me2/3  and  is  required  for  SAGA  complex  recruitment  and  histone  H3acetylation. Embo J, 2011, 30: 2829-2842
  21  Mosammaparast N, Shi Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu RevBiochem, 2010, 79: 155-179
  22  Shi Y J, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear arnine oxidase homolog LSD1. Cell, 2004, 119: 941-953
  23  Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of Jmj C domain-containing proteins. Nature, 2006,439: 811-816
  24  Shi Y, Whetstine J R. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell, 2007, 25: 1-14
  25  Klose R J, Yi Z. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Bio, 2007, 8: 307-318
  26  Eilbracht  J,  Reichenzeller  M,  Hergt  M,  et  al.  NO66,  a  highly  conserved  dual  location  protein  in  the  nucleolus  and  in  a  special  type  ofsynchronously replicating chromatin. Mol Biol Cell, 2004, 15: 1816-1832
  27  Tao  Y,  Wu  M  H,  Zhou  X,  et  al.  Structural  insights  into  histone  demethylase  NO66  in  interaction  with  osteoblast-specific  transcriptionfactor osterix and gene repression. J Biol Chem, 2013, 288: 16430-16437
  28  Wang C L, Zhang Q D, Hang T R, et al. Structure of the Jmj C domain-containing protein NO66 complexed with ribosomal protein Rpl8.Acta Crystallogr D, 2015, 71: 1955-1964
  29  Chowdhury  R,  Sekirnik  R,  Brissett  N  C,  et  al.  Ribosomal  oxygenases  are  structurally  conserved  from  prokaryotes  to  humans.  Nature,2014, 510: 422-426
  30  Sinha  K  M,  Yasuda  H,  Zhou  X,  et  al.  Osterix  and  NO66  histone  demethylase  control  the  chromatin  of  osterix  target  genes  duringosteoblast differentiation. J Bone Miner Res, 2014, 29: 855-865
  31  Bedford M T, Richard S. Arginine methylation: an emerging regulator of protein function. Mol Cell, 2005, 18: 263-272
  32  Bedford M T, Clarke S G. Protein arginine methylation in mammals: who, what, and why. Mol Cell, 2009, 33: 1-13
  33  Di Lorenzo A, Bedford M T. Histone arginine methylation. Febs Lett, 2011, 585: 2024-2031
  34  Wang  C  Y,  Zhu  Y  W,  Chen  J  J,  et  al.  Crystal  structure  of  arginine  methyltransferase  6  from  Trypanosoma  brucei.  PLo S  One,  2014,  9:e87267
  35  Wang C Y, Zhu Y W, Caceres T B, et al. Structural determinants for the strict monomethylation activity by Trypanosoma brucei proteinarginine methyltransferase 7. Structure, 2014, 22: 756-768
  36  Liu K, Chen C, Guo Y H, et al. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. ProcNatl Acad Sci USA, 2010, 107: 18398-18403
  37  Wade P A. Methyl Cp G binding proteins: coupling chromatin architecture to gene regulation. Oncogene, 2001, 20: 3166-3173
  38  Allen  M  D,  Grummitt  C  G,  Hilcenko  C,  et  al.  Solution  structure  of  the  nonmethyl-Cp G-binding  CXXC  domain  of  theleukaemia-associated MLL histone methyltransferase. Embo J, 2006, 25: 4503-4512
  39  Long H K, Blackledge N P, Klose R J. ZF-Cxx C domain-containing proteins, Cp G islands and the chromatin connection. Biochem Soc T,2013, 41: 727-740
  40  Xu C, Bian C B, Lam R, et al. The structural basis for selective binding of non-methylated Cp G islands by the CFP1 CXXC domain. NatCommun, 2011, 2: 385-396
  41  Thomson  J P,  Skene P  J,  Selfridge  J,  et al. Cp G  islands influence  chromatin  structure via  the Cp G-binding  protein Cfp1. Nature, 2010,464: U1082-U1162
  42  Xu Y F, Xu C, Kato A, et al. Tet3 CXXC Domain and dioxygenase activity cooperatively regulate key genes for xenopus eye and neuraldevelopment. Cell, 2012, 151: 1200-1213
  43  Rozenski J, Crain P F, Mc Closkey J A. The RNA modification database: 1999 update. Nucleic Acids Res, 1999, 27: 196-197
  44  Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet,2014, 15: 293-306
  45  Wang Y, Li Y, Toth J I, et al. N-6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat CellBiol, 2014, 16: 191-198
  46  Liu J Z, Yue Y N, Han D L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N-6-adenosine methylation. NatChem Biol, 2014, 10: 93-95
  47  Ping  X  L, Sun  B F,  Wang L,  et  al. Mammalian WTAP  is  a  regulatory subunit of the  RNA  N6-methyladenosine  methyltransferase. CellRes, 2014, 24: 177-189
  48  Jia  G F,  Fu  Y,  Zhao  X, et  al.  N6-Methyladenosine in  nuclear  RNA  is a  major  substrate of  the obesity-associated  FTO.  Nat  Chem  Biol,2011, 7: 885-887
  49  Zheng G Q, Dahl J A, Niu Y M, et al. ALKBH5 is a mammalian RNA demethylase that impacts rna metabolism and mouse fertility. MolCell, 2013, 49: 18-29
  50  Dominissini  D,  Moshitch-Moshkovitz  S,  Schwartz  S,  et  al.  Topology  of  the  human  and  mouse  m(6)A  RNA  methylomes  revealed  by m(6)A-seq. Nature, 2012, 485: U201-U284
  51  Wang X, Lu Z K, Gomez A, et al. N-6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505: 117-120
  52  Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m(6)A RNA by the YTHDC1 YTH domain. Nat Chem Biol, 2014,10: 927-929
  53  Luo S K, Tong L. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc Natl Acad SciUSA, 2014, 111: 13834-13839
  54  Li F D, Zhao D B, Wu J H, et al. Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals anaromatic cage for m(6)A recognition. Cell Res, 2014, 24: 1490-1492
  55  Xu C, Liu K, Ahmed H, et al. Structural basis for the discriminative recognition of N-6-Methyladenosine RNA by the human YT521-Bhomology domain family of proteins. J Biol Chem, 2015, 290: 24902-24913
  56  Aik  W,  Scotti  J  S,  Choi  H,  et  al.  Structure  of  human  RNA  N-6-methyladenine  demethylase  ALKBH5  provides  insights  into  itsmechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res, 2014, 42: 4741-4754
  57  Xu  C,  Liu  K,  Tempel  W,  et  al.  Structures  of  human  ALKBH5  demethylase  reveal  a  unique  binding  mode  for  specific  single-strandedN-6-Methyladenosine RNA demethylation. J Biol Chem, 2014, 289: 17299-17311
  58  Sudarsanam  P,  Winston  F.  The  Swi/Snf  family-nucleosome-remodeling  complexes  and  transcriptional  control.  Trends  Genet,  2000,  16:345-351
  59  Conaway  R  C,  Conaway  J  W.  The  INO80  chromatin  remodeling  complex  in  transcription,  replication  and  repair.  Trends  Biochem  Sci,2009, 34: 71-77
  60  Kasten M M, Clapier C R, Cairns B R. Snap Shot: chromatin remodeling: SWI/SNF. Cell, 2011, 144: 310
  61  Narlikar G J, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-Dependent chromatin-remodeling enzymes. Cell,2013, 154: 490-503
  62  Clapier C R, Cairns B R. The biology of chromatin remodeling complexes. Annu Rev Biochem, 2009, 78: 273-304
  63  Yang  X  F,  Zaurin  R,  Beato  M,  et  al.  Swi3p  controls  SWI/SNF  assembly  and  ATP-dependent  H2A-H2B  displacement.  Nat  Struct  MolBiol, 2007, 14: 540-547
  64  Swanson M J, Qiu H F, Sumibcay L, et al. A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo. Mol CellBiol, 2003, 23: 2800-2820
  65  Ferreira M E, Prochasson P, Berndt K D, et al. Activator-binding domains of the SWI/SNF chromatin remodeling complex characterizedin vitro are required for its recruitment to promoters in vivo. FEBS J, 2009, 276: 2557-2565
  66  Ho L, Crabtree G R. Chromatin remodelling during development. Nature, 2010, 463: 474-484
  67  Helming K C, Wang X F, Roberts C W M. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell, 2014, 26: 309-317
  68  Bitler  B  G,  Fatkhutdinov  N,  Zhang  R  G.  Potential  therapeutic  targets  in  ARID1A-mutated  cancers.  Expert  Opin  Ther  Tar,  2015,  19:1419-1422
  69  Biegel J A, Busse T M, Weissman B E. SWI/SNF chromatin remodeling complexes and cancer. Am J Med Genet C, 2014, 166: 350-366
  70  Leschziner  A  E,  Nogales  E.  Visualizing  flexibility  at  molecular  resolution:  Analysis  of  heterogeneity  in  single-particle  electronmicroscopy reconstructions. Annu Rev Bioph Biom, 2007, 36: 43-62
  71  Bao Y H, Shen X T. Snap Shot: chromatin remodeling: INO80 and SWR1. Cell, 2011, 144: U158-U165
  72  Gerhold C B, Gasser S M. INO80 and SWR complexes: relating structure to function in chromatin remodeling. Trends Cell Biol, 2014,24: 619-631
  73  Nguyen  V  Q,  Ranjan  A,  Stengel  F,  et  al.  Molecular  architecture  of  the  ATP-dependent  chromatin-remodeling  complex  SWR1.  Cell,2013, 154: 1220-1231
  74  Tosi  A,  Haas  C,  Herzog  F,  et  al.  Structure  and  subunit  topology  of  the  INO80  chromatin  remodeler  and  its  nucleosome  complex.  Cell,2013, 154: 1207-1219
  75  Saleh  A,  Alvarez-Venegas  R,  Yilmaz  M,  et  al.  The highly  similar Arabidopsis homologs of trithorax  ATX1 and  ATX2  encode proteinswith divergent biochemical functions. Plant Cell, 2008,   20: 568-579
  76  Saleh  A,  Alvarez-Venegas  R,  Avramova  Z.  Dynamic  and  stable  histone  H3  methylation  patterns  at  the  Arabidopsis  FLC  and  AP1  loci.Gene, 2008, 423: 43-47
  77  Ding  Y,  Avramova  Z,  Fromm  M.  Two distinct  roles  of  Arabidopsis  homolog  of  trithorax1  (ATX1)  at  promoters  and  within  transcribedregions of ATX1-regulated Genes. Plant Cell, 2011, 23: 350-363
  78  Ding  Y,  Avramova  Z,  Fromm  M.  The  Arabidopsis  trithorax-like  factor  ATX1  functions  in  dehydration  stress  responses  via ABA-dependent and ABA-independent pathways. Plant J, 2011, 66: 735-744
  79  Ding Y, Fromm M, Avramova Z. Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nat Commun, 2012, 3:740
  80  van  Dijk  K,  Ding  Y,  Malkaram  S,  et  al.  Dynamic  changes  in  genome-wide  histone  H3  lysine  4  methylation  patterns  in  response  todehydration stress in Arabidopsis thaliana. Bmc Plant Biol, 2010, 10: 238
  81  Zhang  X  Y,  Bernatavichute  Y  V,  Cokus  S,  et  al.  Genome-wide  analysis  of  mono-,  di-  and  trimethylation  of  histone  H3  lysine  4  inArabidopsis thaliana. Genome Biol, 2009, 10: 100-105
  82  Ding  Y,  Ndamukong  I,  Xu  Z  S,  et  al.  ATX1-generated  H3K4me3  is  required  for  efficient  elongation  of  transcription,  not  initiation,  atATX1-regulated genes. PLo S Genet, 2012, 8: 1208-1213
  83  Fromm M, Avramova Z. ATX1/At COMPASS and the H3K4me3 marks: how do they activate Arabidopsis genes? Curr Opin Plant Biol,2014, 21: 75-82
  84  Ding Y, Virlouvet L, Liu N, et al. Dehydration stress memory genes of Zea mays comparison with Arabidopsis thaliana. Bmc Plant Biol,2014, 14: 1-15
  85  Ding Y, Liu N, Virlouvet L, et al. Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. Bmc Plant Biol, 2013,13: 229
  86  Pien S, Fleury D, Mylne J S, et al. ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone3 lysine 4 trimethylation. Plant Cell, 2008, 20: 580-588
  87  Alvarez-Venegas R,  Pien S,  Sadder  M,  et  al.  ATX-1,  an  Arabidopsis  homolog  of trithorax,  activates  flower  homeotic genes.  Curr Biol,2003, 13: 627-637
  88  Wier  A  D,  Mayekar  M  K,  Héroux  A,  et  al. Structural  basis  for  Spt5-mediated  recruitment of  the  Paf1 complex to chromatin.  Proc  NatlAcad Sci USA, 2013, 110: 17290-17295
  89  Zhou  K,  Kuo  W  H  W,  Fillingham  J,  et  al.  Control  of  transcriptional  elongation  and  cotranscriptional  histone  modification  by  the  yeastBUR kinase substrate Spt5. Proc Natl Acad Sci USA, 2009, 106: 6956-6961
作者单位:
相关内容推荐
相关标签:
返回:医学遗传学论文