表观遗传学的修饰与染色质重塑(3)
来源:未知 作者:chunt
发布于:2017-04-05 共16250字
4小结
本综述基于中国科学技术大学生命科学学院的成员近年来在表观遗传学方面的研究进展进行了回顾,包括了经典的表观遗传学修饰调控,如组蛋白修饰和DNA甲基化,又加入了最新的RNA表观遗传学和植物表观遗传学的研究内容,从结构生物学和分子生物学的角度回顾了研究进展。表观遗传学作为世界上转录调控的一个热点,其进展日新月异。相信,未来冷冻电子显微镜等新技术的进一步发展,将为表观遗传调控和染色质修饰相关的大复合物研究提供更广阔的前景。
参考文献
1 Ullah M, Pelletier N, Xiao L, et al. Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol Cell Biol,2008, 28: 6828-6843
2 Qiu Y, Liu L, Zhao C, et al. Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZreveals a regulatory mechanism for HOXA9 transcription. Gene Dev, 2012, 26: 1376-1391
3 Xiong X Z, Panchenko T, Yang S, et al. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. NatChem Biol, 2016, 12: 1111
4 Qin S, Jin L, Zhang J H, et al. Recognition of unmodified histone H3 by the first PHD finger of Bromodomain-PHD finger protein 2provides insights into the regulation of histone acetyltransferases monocytic leukemic zinc-finger protein (MOZ) and MOZ-related factor(MORF)。 J Biol Chem, 2011, 286: 36944-36955
5 Liu, L, Qin, S, Zhang, J H, et al., Solution structure of an atypical PHD finger in BRPF2 and its interaction with DNA.J Struct Biol,2012180: 165-173
6 Shen W Q, Xu C, Huang W, et al. Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails.Biochemistry-Us, 2007, 46: 2100-2110
7 Huang H D, Zhang J H, Shen W Q, et al. Solution structure of the second bromodomain of Brd2 and its specific interaction withacetylated histone tails. Bmc Struct Biol, 2007, 7: 57
8 Liu Y, Wang X Q, Zhang J H, et al. Structural basis and binding properties of the second bromodomain of Brd4 with acetylated histonetails. Biochemistry-Us, 2008, 47: 6403-6417
9 Sun H B, Liu J X, Zhang J H, et al. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histoneH3 and H4. Biochem Bioph Res Co, 2007, 358: 435-441
10 Ng S S, Yue W W, Oppermann U, et al. Dynamic protein methylation in chromatin biology. Cell Mol Life Sci, 2009, 66: 407-422
11 Heintzman N D, Hon G C, Hawkins R D, et al. Histone modifications at human enhancers reflect global cell-type-specific geneexpression. Nature, 2009, 459: 108-112
12 Santos-Rosa H, Schneider R, Bannister A J, et al. Active genes are tri-methylated at K4 of histone H3. Nature, 2002, 419: 407-411
13 Stewart M D, Li J W, Wong J M. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatinprotein 1 recruitment. Mol Cell Biol, 2005, 25: 2525-2538
14 Li H T, Ilin S, Wang W K, et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF.Nature, 2006, 442: 91-95
15 Xu C, Min J R. Structure and function of WD40 domain proteins. Protein Cell, 2011, 2: 202-214
16 Collins R E, Northrop J P, Horton J R, et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- anddimethyllysine binding modules. Nat Struct Mol Biol, 2008, 15: 245-250
17 Yun M Y, Wu J, Workman J L, et al. Readers of histone modifications. Cell Res, 2011, 21: 564-578
18 Declais A C, Lilley D M J. New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr Opin StrucBiol, 2008, 18: 86-95
19 Samara N L, Wolberger C. A new chapter in the transcription SAGA. Curr Opin Struc Biol, 2011, 21: 767-774
20 Bian C B, Xu C, Ruan J B, et al. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3acetylation. Embo J, 2011, 30: 2829-2842
21 Mosammaparast N, Shi Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu RevBiochem, 2010, 79: 155-179
22 Shi Y J, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear arnine oxidase homolog LSD1. Cell, 2004, 119: 941-953
23 Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of Jmj C domain-containing proteins. Nature, 2006,439: 811-816
24 Shi Y, Whetstine J R. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell, 2007, 25: 1-14
25 Klose R J, Yi Z. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Bio, 2007, 8: 307-318
26 Eilbracht J, Reichenzeller M, Hergt M, et al. NO66, a highly conserved dual location protein in the nucleolus and in a special type ofsynchronously replicating chromatin. Mol Biol Cell, 2004, 15: 1816-1832
27 Tao Y, Wu M H, Zhou X, et al. Structural insights into histone demethylase NO66 in interaction with osteoblast-specific transcriptionfactor osterix and gene repression. J Biol Chem, 2013, 288: 16430-16437
28 Wang C L, Zhang Q D, Hang T R, et al. Structure of the Jmj C domain-containing protein NO66 complexed with ribosomal protein Rpl8.Acta Crystallogr D, 2015, 71: 1955-1964
29 Chowdhury R, Sekirnik R, Brissett N C, et al. Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature,2014, 510: 422-426
30 Sinha K M, Yasuda H, Zhou X, et al. Osterix and NO66 histone demethylase control the chromatin of osterix target genes duringosteoblast differentiation. J Bone Miner Res, 2014, 29: 855-865
31 Bedford M T, Richard S. Arginine methylation: an emerging regulator of protein function. Mol Cell, 2005, 18: 263-272
32 Bedford M T, Clarke S G. Protein arginine methylation in mammals: who, what, and why. Mol Cell, 2009, 33: 1-13
33 Di Lorenzo A, Bedford M T. Histone arginine methylation. Febs Lett, 2011, 585: 2024-2031
34 Wang C Y, Zhu Y W, Chen J J, et al. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei. PLo S One, 2014, 9:e87267
35 Wang C Y, Zhu Y W, Caceres T B, et al. Structural determinants for the strict monomethylation activity by Trypanosoma brucei proteinarginine methyltransferase 7. Structure, 2014, 22: 756-768
36 Liu K, Chen C, Guo Y H, et al. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. ProcNatl Acad Sci USA, 2010, 107: 18398-18403
37 Wade P A. Methyl Cp G binding proteins: coupling chromatin architecture to gene regulation. Oncogene, 2001, 20: 3166-3173
38 Allen M D, Grummitt C G, Hilcenko C, et al. Solution structure of the nonmethyl-Cp G-binding CXXC domain of theleukaemia-associated MLL histone methyltransferase. Embo J, 2006, 25: 4503-4512
39 Long H K, Blackledge N P, Klose R J. ZF-Cxx C domain-containing proteins, Cp G islands and the chromatin connection. Biochem Soc T,2013, 41: 727-740
40 Xu C, Bian C B, Lam R, et al. The structural basis for selective binding of non-methylated Cp G islands by the CFP1 CXXC domain. NatCommun, 2011, 2: 385-396
41 Thomson J P, Skene P J, Selfridge J, et al. Cp G islands influence chromatin structure via the Cp G-binding protein Cfp1. Nature, 2010,464: U1082-U1162
42 Xu Y F, Xu C, Kato A, et al. Tet3 CXXC Domain and dioxygenase activity cooperatively regulate key genes for xenopus eye and neuraldevelopment. Cell, 2012, 151: 1200-1213
43 Rozenski J, Crain P F, Mc Closkey J A. The RNA modification database: 1999 update. Nucleic Acids Res, 1999, 27: 196-197
44 Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet,2014, 15: 293-306
45 Wang Y, Li Y, Toth J I, et al. N-6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat CellBiol, 2014, 16: 191-198
46 Liu J Z, Yue Y N, Han D L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N-6-adenosine methylation. NatChem Biol, 2014, 10: 93-95
47 Ping X L, Sun B F, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. CellRes, 2014, 24: 177-189
48 Jia G F, Fu Y, Zhao X, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol,2011, 7: 885-887
49 Zheng G Q, Dahl J A, Niu Y M, et al. ALKBH5 is a mammalian RNA demethylase that impacts rna metabolism and mouse fertility. MolCell, 2013, 49: 18-29
50 Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m(6)A RNA methylomes revealed by m(6)A-seq. Nature, 2012, 485: U201-U284
51 Wang X, Lu Z K, Gomez A, et al. N-6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505: 117-120
52 Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m(6)A RNA by the YTHDC1 YTH domain. Nat Chem Biol, 2014,10: 927-929
53 Luo S K, Tong L. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc Natl Acad SciUSA, 2014, 111: 13834-13839
54 Li F D, Zhao D B, Wu J H, et al. Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals anaromatic cage for m(6)A recognition. Cell Res, 2014, 24: 1490-1492
55 Xu C, Liu K, Ahmed H, et al. Structural basis for the discriminative recognition of N-6-Methyladenosine RNA by the human YT521-Bhomology domain family of proteins. J Biol Chem, 2015, 290: 24902-24913
56 Aik W, Scotti J S, Choi H, et al. Structure of human RNA N-6-methyladenine demethylase ALKBH5 provides insights into itsmechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res, 2014, 42: 4741-4754
57 Xu C, Liu K, Tempel W, et al. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-strandedN-6-Methyladenosine RNA demethylation. J Biol Chem, 2014, 289: 17299-17311
58 Sudarsanam P, Winston F. The Swi/Snf family-nucleosome-remodeling complexes and transcriptional control. Trends Genet, 2000, 16:345-351
59 Conaway R C, Conaway J W. The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci,2009, 34: 71-77
60 Kasten M M, Clapier C R, Cairns B R. Snap Shot: chromatin remodeling: SWI/SNF. Cell, 2011, 144: 310
61 Narlikar G J, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-Dependent chromatin-remodeling enzymes. Cell,2013, 154: 490-503
62 Clapier C R, Cairns B R. The biology of chromatin remodeling complexes. Annu Rev Biochem, 2009, 78: 273-304
63 Yang X F, Zaurin R, Beato M, et al. Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement. Nat Struct MolBiol, 2007, 14: 540-547
64 Swanson M J, Qiu H F, Sumibcay L, et al. A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo. Mol CellBiol, 2003, 23: 2800-2820
65 Ferreira M E, Prochasson P, Berndt K D, et al. Activator-binding domains of the SWI/SNF chromatin remodeling complex characterizedin vitro are required for its recruitment to promoters in vivo. FEBS J, 2009, 276: 2557-2565
66 Ho L, Crabtree G R. Chromatin remodelling during development. Nature, 2010, 463: 474-484
67 Helming K C, Wang X F, Roberts C W M. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell, 2014, 26: 309-317
68 Bitler B G, Fatkhutdinov N, Zhang R G. Potential therapeutic targets in ARID1A-mutated cancers. Expert Opin Ther Tar, 2015, 19:1419-1422
69 Biegel J A, Busse T M, Weissman B E. SWI/SNF chromatin remodeling complexes and cancer. Am J Med Genet C, 2014, 166: 350-366
70 Leschziner A E, Nogales E. Visualizing flexibility at molecular resolution: Analysis of heterogeneity in single-particle electronmicroscopy reconstructions. Annu Rev Bioph Biom, 2007, 36: 43-62
71 Bao Y H, Shen X T. Snap Shot: chromatin remodeling: INO80 and SWR1. Cell, 2011, 144: U158-U165
72 Gerhold C B, Gasser S M. INO80 and SWR complexes: relating structure to function in chromatin remodeling. Trends Cell Biol, 2014,24: 619-631
73 Nguyen V Q, Ranjan A, Stengel F, et al. Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell,2013, 154: 1220-1231
74 Tosi A, Haas C, Herzog F, et al. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell,2013, 154: 1207-1219
75 Saleh A, Alvarez-Venegas R, Yilmaz M, et al. The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteinswith divergent biochemical functions. Plant Cell, 2008, 20: 568-579
76 Saleh A, Alvarez-Venegas R, Avramova Z. Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci.Gene, 2008, 423: 43-47
77 Ding Y, Avramova Z, Fromm M. Two distinct roles of Arabidopsis homolog of trithorax1 (ATX1) at promoters and within transcribedregions of ATX1-regulated Genes. Plant Cell, 2011, 23: 350-363
78 Ding Y, Avramova Z, Fromm M. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J, 2011, 66: 735-744
79 Ding Y, Fromm M, Avramova Z. Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nat Commun, 2012, 3:740
80 van Dijk K, Ding Y, Malkaram S, et al. Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response todehydration stress in Arabidopsis thaliana. Bmc Plant Biol, 2010, 10: 238
81 Zhang X Y, Bernatavichute Y V, Cokus S, et al. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 inArabidopsis thaliana. Genome Biol, 2009, 10: 100-105
82 Ding Y, Ndamukong I, Xu Z S, et al. ATX1-generated H3K4me3 is required for efficient elongation of transcription, not initiation, atATX1-regulated genes. PLo S Genet, 2012, 8: 1208-1213
83 Fromm M, Avramova Z. ATX1/At COMPASS and the H3K4me3 marks: how do they activate Arabidopsis genes? Curr Opin Plant Biol,2014, 21: 75-82
84 Ding Y, Virlouvet L, Liu N, et al. Dehydration stress memory genes of Zea mays comparison with Arabidopsis thaliana. Bmc Plant Biol,2014, 14: 1-15
85 Ding Y, Liu N, Virlouvet L, et al. Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. Bmc Plant Biol, 2013,13: 229
86 Pien S, Fleury D, Mylne J S, et al. ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone3 lysine 4 trimethylation. Plant Cell, 2008, 20: 580-588
87 Alvarez-Venegas R, Pien S, Sadder M, et al. ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol,2003, 13: 627-637
88 Wier A D, Mayekar M K, Héroux A, et al. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc NatlAcad Sci USA, 2013, 110: 17290-17295
89 Zhou K, Kuo W H W, Fillingham J, et al. Control of transcriptional elongation and cotranscriptional histone modification by the yeastBUR kinase substrate Spt5. Proc Natl Acad Sci USA, 2009, 106: 6956-6961
作者单位:
相关内容推荐
-
表观遗传学在骨髓间充质干细胞凋亡与分化的调
引言表观遗传学是指DNA序列不发生变化而基因表达却发生了可遗传的改变的一门遗传学分支学科,主要机制包括:DNA甲基化、组蛋白修饰、基因沉默,广义上还包括微小RNA(microRNA,miR-NA)的调控等[1].骨髓间充质干细胞(bonemarrowmesenchymalstemcells,BM...
-
Tfh细胞分化过程中受到的表观遗传学调控机制
多发性硬化症(multiplesclerosis,MS)是经典的中枢神经系统自身免疫性脱髓鞘疾病,目前病因未知。大部分患者在发病初期呈现复发-缓解的症状,称为复发缓解型MS(relapsing-remittingMS,RRMS)。RRMS以中枢神经系统脱髓鞘损伤并出现症状作为起病特征,病程高度可...
-
表观遗传学在动物遗传育种中的应用
文中综述和分析了表观遗传学在猪、牛、羊和鸡等传统家养动物育种领域的研究现状及相关技术的发展趋势, 将对全面了解家养动物经济性状及优异性状形成的分子机制,...
-
食管癌相关的表观遗传学的改变
食管癌是消化系统常见的恶性肿瘤之一,恶性程度高,5年生存率不到30%。食管癌的发病有着明显的地域性。中国是世界上食管癌的高发国家,同时也是食管癌高死亡率的国家之一。食管癌按病理可分为食管鳞癌和食管腺癌。我国以食管鳞癌为主,食管鳞癌约占95%。早中...
-
表观遗传学及其生物医药技术发展研究综述
表观遗传学和基于表观遗传机制的生物医药技术的研究已经成为后基因组时代生命科学技术领域的重要组成部分。围绕肿瘤、心脑血管疾病、糖尿病及中老年神经退行性疾病等过程中DNA甲基化修饰、组蛋白翻译后修饰及非编码RNA等表观遗传学改变的深入研究,不仅有...
-
-
研究线粒体DNA表观遗传学的作用以及展望
可从线粒体酶活性方面研究mt DNA甲基化的作用, 如mt DNMT1和TETs酶活性的变化, 在调节哺乳动物mt DNA甲基化和羟甲基化发挥关键作用;以及mt DNA表观遗传调控可能参与的信号通路机制...
相关标签: