无机化学论文

您当前的位置:学术堂 > 化学论文 > 无机化学论文 >

单壁碳纳米管对光化学途径的影响

来源:学术堂 作者:姚老师
发布于:2015-07-04 共2969字
摘要

  纳米材料指至少在一个维度上其结构单元尺寸在 1 ~100 nm 范围内的材料[1-3]. 随着人类对分子操控技术的掌握,越来越多的纳米材料被人类合成,如富勒烯、碳纳米管,二硫化钨、二硫化钛等。 其中碳原子独特的杂化性质和碳结构对操作条件的敏感性使其比其它许多无机材料更容易裁剪控制。 基态碳轨道构造是 1S2,2S2,2P2,2S 轨道与 2P 轨道能量差异非常小,位于 2S 轨道中的电子很容易跃迁到 2P 轨道,另外碳原子周围的其它原子也会影响电子稳定性,从而可以杂化成 SP,SP2,SP3结构[4]. 正由于这些不同的杂化类型,有机物可以碳原子为骨架,形成种类繁多的有机化合物,如在高温或高压下,碳原子通过 SP3杂化形态四面体结构,即钻石的结构。 低热条件下,碳原子则通过 SP2杂化形成平面结构,即石墨结构[4].

  这种石墨平面结构可以弯曲形成球状或管状结构,而因为弯曲所消耗的能量恰好被形成球状或管状结构时而减少的石墨结构边缘不稳定的化学键所抵消。 石墨平面结构形成的球状结构为富勒烯,于 1985 年被 Kroto 发现,管状结构为碳纳米管,于 1991 年被合成[5-6]. 富勒烯和碳纳米管不但具有石墨的许多性质,而且由于纳米尺度效应它们在物理、化学和电子结构上还具有一些独特的性质如很强的吸附性,半导电性,高热导性等[4].

  因此在许多领域被广泛应用。据估计,2011 年以来,世界范围内的单壁碳纳米管生产已超过 1 000 t,富勒烯和纳米管的生产速度高达 1 500 t/年[3]. 碳纳米管及其衍生物主要应用于塑料、催化剂、电池、燃料电极、外科校正、水纯化系统、传感器、电极成分、航空、汽车工业等[2,4]. 碳基纳米材料广泛的应用和生产增加了其向环境中释放的风险。

  进入环境的纳米管如何迁移转化,对人类和其它环境生物有什么影响,对环境介质中其它污染物迁移转化有何影响是目前急需解答的问题,然而有关这方面的研究及其有限[1]. 一些研究指出富勒烯及其衍生物富勒醇分散液在太阳光下具有较高的光化学活性[7-10]. 由于碳纳米管与富勒烯具有相似的 π-π 电子共轭结构,而且碳纳米管被广泛用于光催化剂原料,所以我们推测碳纳米光也具有一定的光化学活性,并对其它水体光化学活性成分具有一定的影响。

  本研究以氙灯为模拟太阳光源,利用分子探针,检测单壁碳纳米管分散液在去离子中活性氧产生状况,探究单壁碳纳米管对光化学途径的影响。

  1 实验部分

  1. 1 试剂

  单壁碳纳米管,纯度 > 95%,深圳纳米港; 甲醇,色谱纯,Tedia 公司; 呋喃醇,色谱纯,Sigma-Al-dch; 对氯苯甲酸,山梨酸,2,4,6-三氯苯酚,氯化铁,乙酸铵,盐酸,氢氧化钠,分析纯,南京化学试剂有限公司。

  1. 2 仪器

  超声波细胞粉碎机( JY88-Ⅱ,南京以马内利仪器设备有限公司) ; XPA 光化学反应仪( 南京胥江机电厂,配 1 kW 氙灯控制器) ,高效液相色谱( Agilent 1200,Agilent TC-C18 柱,5 μm,250 mm ×4. 5 mm) ,pH 计( sartorius PB-10) ,分析天平( sar-torius BSA-124S) ,紫外分光光度计( Shimadzu UV-2201) ,总有机碳测定仪( TOC-5000A)1. 3 实验方法。

  1) 单壁碳纳米管光化学活性的检测

  分析天平称取 10 mg 单壁碳纳米管,加入250 mL去离子水后立即置于超声波细胞破碎仪,60 ~ 80 W 下超生至单壁碳纳米管在 400 nm 处的吸光度不变为止。 将超生后的单壁碳纳米管分别稀释 2 倍,4 倍,10 倍和 20 倍,分别测定它们在400 nm 处的吸光度和总有机碳,拟合它们之间的关系。

  选用呋喃醇作为单线态探针[11]. 配制含有 0,0. 8,3. 2,8 mgC / L 单壁碳纳米管溶液和腐殖质溶液各四份,其中均含有 23 μmol/L 呋喃醇,将八份溶液转移到 pyrex 玻璃管中,并置入 XPA 反应器继续光照反应,于 0,5,10,20,30 h 取样 1 mL,样品过0. 45 μm 聚四氟乙烯滤膜后用 HPLC 分析呋喃醇的浓度。

  选用对氯苯甲酸作为羟基自由基探针[11]. 配制含有0,0. 8,3. 2,8 mgC/L 单壁碳纳米管溶液和腐殖质溶液各四份,其中均含有对氯苯甲酸2 μmol / L,将八份溶液转移到 pyrex 玻璃管中,并置入 XPA 反应器继续光照反应,于 0,5,10,20,30 h取样 1 mL,样品过 0. 45 μm 聚四氟乙烯滤膜后用 HPLC 分析对氯苯甲酸的浓度。

  2) 分析方法

  呋喃醇 HPLC 分析方法: Agilent SB-C18 色谱柱( 250 mm ×4. 6 mm,i. d. 5 μm) ,流动相为甲醇∶水 = 60 ∶ 40,流速为 1. 0 mL/min,检测波长为216 nm,进样量为 20 μL.对氯苯甲酸 HPLC 分析方法: Agilent SB-C18色谱柱( 250 mm ×4. 6 mm,i. d. 5 μm) ,流动相为甲醇∶ 水 =60∶ 40,流速为1. 0 mL/min,检测波长为254 nm,进样量为 20 μL.

  2 结果与讨论

  单壁碳纳米管具有很强的吸光性,波长范围遍及 200 ~800 nm. 其中单壁碳纳米管在 400 nm处对光的吸收适中,其它物质干扰最小,所以本文选用 400 nm 作为单壁碳纳米管的定量波长。 根据热重分析结果,见图 1,单壁碳纳米管在 800 ℃后质量损失达到 90%以上,因此本文采用干法总有机碳分析仪,以 mgC/L 来确定纳米管的含量[12].

  图 2 为单壁碳纳米管 TOC 测定结果与400 nm吸光度的线性关系。 可见 400 nm 处的吸光度能很好地反映单壁碳纳米管的浓度。由于单壁碳纳米管结构与富勒烯相似,且具有较强的吸光性,类似于腐殖质,可能具有一定的光化学活性,下面的研究进行逐步确认。

  2. 1 单线态氧检测

  激发态腐殖质可以将能量传递给水中溶解氧使其变成单线态氧,而单壁碳纳米管是否具有此能力? 本研究使用单线态氧探针呋喃醇对此进行验证。 通过分析呋喃醇在单壁碳纳米管分散液中不同时间的光降解率发现相比于未加单壁碳纳米管的对照组,呋喃醇有显着降解,见图 3. 这表明单壁碳纳米管也有能力在模拟太阳光照下将自身能量传递给溶解氧产生单线态氧。 实验发现呋喃醇在单壁碳纳米管分散液中光解服从零级动力学,但速率常数随着单壁碳纳米管浓度的增加而增大,其中单线态氧浓度在 4 × 10- 14~ 10 ×10- 14mol / L,这表明单壁碳纳米管产生单线态氧的能力有很大潜力。 与相同浓度的 SRFA 溶液相比,单壁碳纳米管产生单线态氧的能力远低于SRFA,其中 SRFA 产生单线态氧的能力是单壁碳纳米管的 5 ~9 倍。

  2. 2 羟基自由基检测
  
  有报道称羧基化单壁碳纳米管在模拟太阳光照下能是水中溶解氧激发变成超氧负离子,超氧负离子再与水中氢离子结合产生双氧水,进而光解产生羟基自由基。 本研究用对氯苯甲酸为分子探针,检测模拟太阳光下单壁碳纳米管分散液产生羟基自由基状况。 如图 4 所示,与未加单壁碳纳米管的对照组相比,含有碳纳米管的溶液中对氯苯甲酸在光照 30 h 内显着降解,降解服从零级动力学。 这说明未衍生化的单壁碳纳米管也能产生羟基自由基。 但光照过程中我们并未在单壁碳纳米管分散液中检测到超氧负离子和过氧化氢,这表明未衍生化的单壁碳纳米管产生羟基的反应途径与羧基化单壁碳纳米管不同。 低、中和高浓度下的单壁碳纳米管具有相近的降解速率,这说明单壁碳纳米管能产生羟基自由基的活性位点较多,固定强度的光照下,低浓度单壁碳纳米管已经达到饱和,浓度不再是限制因素,其产生羟基自由基浓度在 2. 7 ~5. 9 ×10- 16mol / L. 与 SRFA 相比,单壁碳纳米管产生羟基自由基能力仍然比 SRFA弱,其中 SRFA 产生羟基自由基能力比单壁碳纳米管高 1 ~2. 5 倍。

  3 结 论

  单壁碳纳米管分散液具有光化学活性,模拟太阳光下,能够产生单线态氧和羟基自由基,其产生单线态氧的能力与自身浓度成正比,是相同浓度 SRFA 的 1/9-1/5,单壁碳纳米管产生羟基自由基的能力与自身浓度成反比,是相同浓度 SRFA的 2/5-1/2.

相关内容推荐
相关标签:
返回:无机化学论文