摘 要: 类胡萝卜素与植物的生长发育和光合作用密切相关,对作物品质贡献显着.八氢番茄红素合成酶(phytoene synthase, PSY)是植物体内类胡萝卜素合成通路的端口酶和限速酶,其表达丰度和活性高低直接调控植物体内类胡萝卜素的含量.植物PSY基因的功能受到其自身遗传学、类胡萝卜素合成通路基因及代谢物、各种外界非生物环境等等各种因素的调控.充分认识PSY基因的功能特性和调控机制,并对其进行合理的设计改造可能是未来提高植物体内类胡萝卜素含量的重要途径.作者对不同植物中PSY基因的功能及调控机制的相关研究进展做以综述,以期为植物体内类胡萝卜素积累的遗传调控研究提供理论依据.
关键词: 八氢番茄红素合成酶; 类胡萝卜素; 调控; 合成;
Abstract: Carotenoids are closely related to plant growth and photosynthesis, and contribute significantly to crop quality. Phytoene synthase(PSY) is the port and rate-limiting enzyme in carotenoid biosynthesis pathway. Its expression levels and activity directly regulate the content of carotenoids in plants. The function of PSY was regulated by its own genetics, the genes in carotenoid synthetic pathway and their metabolites, and various external abiotic and environmental factors. Therefore, it is crucial to fully understand the functional characteristics and regulatory mechanism of PSY genes, and carry out reasonable design and modification, which may be an important way to improve carotenoid content in plants in future. The authors described the related research progress of PSY genes functions and regulation mechanisms in different plants, and provided a theoretical basis for the research on genetic regulation of carotenoid accumulation in plants.
Keyword: phytoene synthase; carotenoid; regulation; synthesis;
0、 引言
类胡萝卜素是植物体内一类重要的萜类物质,在植物的生命周期中发挥着重要作用.类胡萝卜素能够参与植物对外界刺激的应答反应,也与植物的光合作用以及光保护效应有关.其中,主要的功能有传递激发能到色素分子,保护光合系统组成成分如叶绿素,清除活性自由基的伤害,保护脂类,感受蓝紫光,也能够参与脱落酸的生物合成等[1,2,3,4,5].除了在植物中的生理作用外,类胡萝卜素对人类的营养和健康也至关重要,如α-胡萝卜素和β-胡萝卜素类是维生素A合成的前体;类胡萝卜素的抗氧化活性有助于减少一些疾病发生的风险,如癌症、心血管疾病和年龄相关性眼病[2,4,5,6].因此,研究植物体内的类胡萝卜素合成途径并调控其含量具有重要意义.八氢番茄红素合成酶(phytoene synthase, PSY)是植物体内类胡萝卜素合成通路上游的端口酶和限速酶,该基因表达量变化能够调控植物体的类胡萝卜素含量、光合效率和抗逆能力[7].PSY基因在植物体内受到精细的遗传调控,本文简要综述了植物PSY基因功能的研究进展及其调控机理,这有助于揭示植物体内类胡萝卜素含量的调控机制,期望能够为植物体内类胡萝卜素积累的遗传调控提供新思路.
1、 PSY基因及其功能研究
1.1 、不同植物中PSY基因数量
PSY催化产生第一个四萜胡萝卜素类物质——八氢番茄红素,该步反应处在整个四萜类物质合成的中间,是合成类胡萝卜素的限速位点和瓶颈[8,9,10].多数植物基因组都编码多个PSY基因,以保障类胡萝卜素体内合成的顺利进行.拟南芥(Arabidopsis thaliana)中仅有1个PSY基因,该基因在5′端存在2个长度不同的剪切变异体,长的剪切变异体含有一个翻译抑制结构,短的剪切变异体缺失了这个结构,逆境条件下倾向于表达短的剪切变异体,进而调控自身的表达量[11].西红柿(Solanum lycopersicum)中SlPSY1和SlPSY2分别在不同的器官表达,SlPSY1仅在果实中表达,SlPSY2在所有组织中表达,在花瓣中表达量最高[12].苹果(Malus domestica)基因组也编码4个PSY基因,其中MdPSY2和MdPSY1在叶片和果实成熟过程中高度表达,与果实中类胡萝卜素含量的增加一致,可能受到乙烯响应因子(ethylene response factor, ERF)转录因子基因家族的转录调控[13].西葫芦(Cucurbita pepo)中有3个PSY基因,CpPSYA、CpPSYB和CpPSYC,CpPSYA在果实中表达量高,CpPSYB和CpPSYC在叶片中表达量高,说明其转录水平受到特异的调控[14].香瓜(Cucumis melo)中具有2个PSY基因,CmPSY1和CmPSY2,两者的器官表达模式各具特点[15].禾本科作物普遍含有3个PSY基因,如水稻(Oryza sativa)中有OsPSY1、OsPSY2和OsPSY3,其中OsPSY1、OsPSY2对光信号反应显着,OsPSY3则受ABA诱导表达较为显着[16];玉米(Zea mays)中含有ZmPSY1、ZmPSY2和ZmPSY3共3个PSY基因,ZmPSY1与种子胚乳胡萝卜素含量密切相关,而ZmPSY2在叶片中可能发挥较为重要的作用[17];异源六倍体小麦(Triticum aestivum)中3个PSY基因分别为TaPSY1、TaPSY2和TaPSY3,每个基因还具有3个高度同源的亚基因组拷贝,即TaPSY1-7AL、TaPSY1-7BL、TaPSY1-7DL、TaPSY2-5AS、TaPSY2-5BS、TaPSY2-7DS、TaPSY3-5AL、TaPSY3-5BL和TaPSY3-5DL,各个基因的表达模式不同,TaPSY3表达量较高,但是TaPSY1已经被报道与小麦籽粒的颜色数量性状密切相关[18].
1.2 、不同植物中PSY基因功能简介
最新的研究结果显示[19],普通烟草(Nicotiana tabacum)中鉴定出3个PSY基因,与番茄中的PSY基因具有高度相似性,其中PSY1和PSY2在叶片中表现出最高的表达水平,PSY基因的沉默能够影响光合系统蛋白质复合体的稳定性.大肠杆菌(Escherichia coli )实验证明,辣椒(Capsicum annuum)中PSY1和辣椒红素合成酶(capsanthin-capsorubin synthase, CCS)基因沉默后,果实中仍积累了基础水平的类胡萝卜素,表明PSY2基因可能补充了PSY1的损失,从而导致黄色辣椒果实呈黄色[20].通过鉴定与硬粒小麦重组自交系群体中类胡萝卜素含量相关的QTL,以及对2个基因型小麦灌浆过程中PSY1基因表达的对比研究,发现PSY1在硬粒小麦发育过程中起主要作用,可以导致粗粒面粉变黄[21].近期的研究发现,PSY在植物修复石油污染的土壤中发挥重要作用,研究发现2种盐角草(Salicornia europaea)能将石油污染土壤中0.2%和2%的石油分别减少到初始数量的40%和60%.而且,0.2%石油胁迫后10 h, PSY的表达量比对照增加了2倍,类胡萝卜素含量比对照增加了2倍.进一步分析发现,盐角草PSY基因启动子中存在对ABA敏感的顺式作用元件,表明该基因在非生物胁迫中起关键作用[22].在藏红花(Crocus sativus)中,CsPSY2与番茄红素β-环化酶(lgcopene β-cyclase B2, LCY-B2)、β-胡萝卜素羟化酶(β-carotene hydroxylase)和类胡萝卜素裂解双加氧酶(carotenoid cleavage dioxygenase2, CCD2)一起,可以产生聚集在藏红花柱头上的有色类胡萝卜素.编码上述4种酶的基因在藏红花发育过程中表达量协调地增加,从而导致类胡萝卜素途径的代谢通量被强烈激活[23,24,25].除CsPSY2外,在藏红花中还存在另外3个PSY基因,它们在类胡萝卜素内稳态方面具有特殊功能.CsPSY1a和CsPSY1b主要在光合组织中表达,但也参与胁迫反应,而CsPSY3则与甾体内酯的产生有关[26].苹果中发现了2个具有代表性的多态性MdPSY2变体,一个具有Tyr358Phe取代(MdPSY2_F),另一个在信号肽(MdPSY2_CG)中另外有6个氨基酸缺失的变体[27].PSY在茄子(Solanum melongena)果实和愈伤组织中表达较低,在茄子愈伤组织中异源表达细菌PSY基因,β-胡萝卜素积累量比未转化的愈伤组织高出约150倍[28].在枇杷(Eriobotrya japonica)中采用病毒诱导的基因沉默技术(virus induced gene silencing, VIGS)干扰PSY基因的表达,则总类胡萝卜素含量下降,表明PSY基因调控枇杷果实中的类胡萝卜素积累[29].
2 、PSY基因的表达调控
2.1、 PSY受到类胡萝卜素合成通路基因及其相关代谢物的调控
类胡萝卜素通路基因表达量的改变可以使各类胡萝卜素产物的含量发生变化,从而对类胡萝卜素的合成通路产生反馈调控作用,PSY作为合成通路的第一个关键酶,其表达受到上下游基因和代谢物的反馈调控[7,8,9].八氢番茄红素脱氢酶(phytoene desaturase, PDS)、ζ-胡萝卜素脱氢酶(ζ-carotene desaturase, ZDS)基因沉默后植株叶片漂白致死,PSY基因表达受到抑制[30].类胡萝卜素异构酶(carotenoid isomerase, CRTISO)基因位于PSY基因的下游,拟南芥的突变导致植物体内积累了大量的番茄红素,分枝点下游的产物黄体素、β-胡萝卜素、紫黄质、玉米黄质等物质含量都出现下降,植株变矮[31];西红柿CRTISO基因的突变可以造成果实中PSY基因的表达量提高,八氢番茄红素积累增加,胡萝卜素总量下降不显着[32];烟草中CRTISO基因的沉默却能够诱导PSY基因的表达并且胡萝卜素含量上升[33].西红柿中PSY基因受到下游cis-胡萝卜素(cis-lycopene, cis-ζ-carotene)等物质含量的调控,因此CRTISO基因及其上下游产物与PSY基因表达量密切相关[34].β番茄红素环化酶(lycopene β-cyclase, β-LCY)基因的过量表达可以提高胡萝卜素的含量和植物的抗逆能力,植株激素脱落酸(abscisic acid, ABA)含量提高,PSY基因的表达量提高[35].烟草、甘薯(Ipomoea batatas)中的ε番茄红素环化酶(lycopene ε-cyclase, ε-LCY)基因沉默可以使体内β-胡萝卜素、紫黄质、玉米黄质等物质的含量增加,黄体素含量略微下降,PSY基因表达量增高,ABA含量提高,植物抗逆能力增强[36,37].β胡萝卜素羟基化酶(β-carotene hydroxylase, β-OHase)基因位于ε-LCY的下游,属于CYP97-P450单加氧酶家族,其突变造成植物体内黄体素、β-胡萝卜素、紫黄质、玉米黄质等物质含量下降,α-胡萝卜素含量上升[38].虽然反馈抑制的现象较多,但各个基因及其相关代谢物调控PSY基因的作用效果不同,具体的调控机理不清楚,ABA可能在其中发挥着比较重要的作用.
2.2 、PSY基因的表达受光照影响
植物类胡萝卜素的合成容易受到环境因子如光照的影响,类胡萝卜素是植物光合系统的组成成分,其合成的调控往往与光合系统的状态密切相关.PSY基因是光调控胡萝卜素通路的一个重要位点[7,8,9].白芥(Sinapis alba)体内光形态建成的过程可以诱导PSY基因的表达,但是在光敏色素phyA突变体中,PSY不再受到诱导表达[39].光敏色素作用因子PIF1可以结合AtPSY的启动子,在光照条件下PIF1可以快速降解使得AtPSY高表达启动胡萝卜素的合成[40].西红柿果实成熟的过程中,光敏色素通过SlPSY基因调控果实中胡萝卜素的积累[41].水稻中OsPSY1和OsPSY2基因特异地受光信号诱导而表达量提高[15].西葫芦中CpPSYB和CpPSYC基因在光合作用器官叶片中的表达量显着高于CpPSYA[13].最近的研究结果表明,光照通过调节类胡萝卜素和类黄酮合成通路中的基因表达,如PSY和查尔酮合酶基因CHS(chalcone synthase),对番茄和甜椒(Bell pepper)果实色素积累产生了积极影响[42].蓝光和红光也可以通过诱导调节植物光调控因子5(elongated hypocotyl 5, HY5)和PIF的光受体增加番茄中番茄红素的含量,从而激活PSY1基因的表达[43].通过植物激素和强光处理,普通烟草叶片中PSY1和PSY2基因表达水平得到一定的升高,但未检测到PSY3的表达,而PSY1和PSY2沉默后植物的光合系统活性显着降低[19].
2.3 、PSY基因的表达受ABA、金属离子及温度等条件的诱导
除了光照,PSY基因的表达还受到ABA、金属离子及温度等条件的诱导.花、果实中的类胡萝卜素生物合成主要受花和果实中发育因子的调控,如番茄果实成熟过程中,叶绿体转化为有色体,类胡萝卜素含量快速上升10多倍,主要是番茄红素含量增加数百倍的缘故,因此果实逐渐变红;期间,PSY基因的表达增加10~20倍,PDS基因的表达上调3倍,而催化番茄红素环化的基因β-LCY和ε-LCY的表达却几乎检测不到[44,45,46].水稻中OsPSY3基因受到抗逆激素ABA的特异诱导表达,但是ABA信号如何传递到PSY基因机制不详[16].结缕草(Zoysia matrella)中ZmPSY基因可以被外源ABA诱导,但也分别被茉莉酸甲酯(methyl jasmonate, MeJA)或黑暗处理所抑制[47].西红柿中,钾离子可以促进PSY基因和胡萝卜素合成通路中其他基因的表达而促进胡萝卜素的积累和果实成熟;锰离子则可以抑制相关基因的表达[48].常山胡柚(Citrus changshanensis)中PSY1基因在贮藏于25 ℃和20 ℃的果实中表达较低,而在贮藏于15 ℃和10 ℃的果实中表达较高,表达水平与总类胡萝卜素的量有很好的相关性[49].成熟绿色辣椒[50]在20 ℃和30 ℃下孵育会分别呈现橙红色和深红色,样品在30 ℃时显示出更高的类胡萝卜素积累,以及类胡萝卜素生物合成相关基因——PSY, LCYb, CrtZ和CCS显着上调表达;在20 ℃,PSY基因表达被下调;而温育结束时,PSY基因表达上调5.5倍,CCS基因的表达减少.这些结果表明,PSY等单个基因的表达是温度依赖性的,并且会影响特定的类胡萝卜素化合物的含量.
2.4 、PSY基因转录后调控机制
转录因子可以直接调控靶标基因的表达,激素和其他方式调控机制信号也都需要转录因子的作用才能传递到靶标基因.拟南芥中AtRAP2.2属于乙烯响应元件结合蛋白(ERF)转录因子家族,它可以结合PSY基因启动子,调控该基因的表达,造成植物体内类胡萝卜素含量的变化[51].PSY基因转录后调控也有相应的文献报道,如OR蛋白可以通过转录后调节PSY来调节类胡萝卜素的积累,促进类胡萝卜素-异戊二烯结构的形成,并防止类胡萝卜素的降解[52].OR蛋白是一个含有CxxCxGxG结构域的蛋白,该结构域富含半胱氨酸,类似于锌指蛋白结构,该蛋白可能属于DnaJ类的分子伴侣,介导其他蛋白的折叠、聚合和亚细胞定位.OR基因的突变,造成花椰菜(Brassica oleracea)中原生质体或其他无色质体分化为用于类胡萝卜素积累的色质体,胡萝卜素含量显着上升,表明OR蛋白参与调控胡萝卜素合成通路[53].近来的研究表明,拟南芥和甘薯体内OR和PSY蛋白可以互相作用,增强PSY蛋白酶活;逆境胁迫条件下,OR蛋白可以从细胞核内向质体积累,结合PSY产生更多的胡萝卜素以应对胁迫,是核质信号传递的一个重要例证[54,55].OR蛋白可促进PSY的活性和稳定性,一些OR突变体也可以防止类胡萝卜素(尤其是β-胡萝卜素)的分解[56].
3 、结论与展望
PSY基因不仅可以通过控制第一个生物合成步骤来调节类胡萝卜素的含量,而且还可以通过对下游基因的表达产生影响来调节类胡萝卜素的含量,从而影响光合活性.同时,PSY基因可能影响植物氨基酸分解代谢过程,这些信息可能有助于进一步研究PSY基因功能和类胡萝卜素的生物合成[19].综上所述,PSY是类胡萝卜素合成途径的首要限速酶,PSY也是控制碳源流向的关键酶基因,诱导PSY超表达可以显着提高植物体内类胡萝卜素含量.但是PSY基因在植物体内受到精细的调控,而PSY与哪些基因发生互作,怎样与其他基因共同协作来保障类胡萝卜素合成的顺利进行尚不明确.各类因素的调控要着落在具体的遗传学机制上,即转录和转录后调控,因此寻找新的能够调控PSY的转录因子或者互作蛋白并解析其调控机制,是揭示植物体内类胡萝卜素含量遗传调控新机制的重要途径.同时,作为端口酶,如何结合合成生物学的研究对PSY进行合理的酶活性设计改造也是未来提高植物体内类胡萝卜素含量的重要途径.
参考文献
[1] NISAR N,LI L,LU S,et al.Carotenoid metabolism in plants[J].Mol Plant,2015,8(1):68-82.
[2] RODRIGUEZ-CONCEPCION M,AVALOS J,BONET L M,et al.A global perspective on carotenoids:Metabolism,biotechnology,and benefits for nutrition and health[J].Prog Lipid Res,2018,70(4):62-93.
[3] FEDER A,CHAYUT N,GUR A,et al.The role of carotenogenic metabolic flux in carotenoid accumulation and chromoplast differentiation:Lessons from the melon fruit[J].Front Plant Sci,2019,10(33):1250.1-1250.7.
[4] SUN T,LI L.Toward the “golden” era:The status in uncovering the regulatory control of carotenoid accumulation in plants[J].Plant Science,2020,11(3):1-31.
[5] LI T.Recent advances in understanding carotenoid-derived signaling molecules in regulating plant growth and development [J].Front Plant Sci,2015,6(790):1-4.
[6] FRASER P D,BRAMLEY P M.The biosynthesis and nutritional uses of carotenoids[J].Prog Lipid Res,2004,43(3):228-265.
[7] EGGERSDORFER M,WYSS A.Carotenoids in human nutrition and health[J].Arch Biochem Biophys,2018,10(652):18-26.
[8] CAZZONELLI C I,POGSON B J.Source to sink:Regulation of carotenoid biosynthesis in plants[J].Trends Plant Sci,2010,15(5):266-274.
[9] CAZZONELLI C I.Carotenoids in nature:Insights from plants and beyond[J].Funct Plant Biol,2011,38(11):833-847.
[10] LU S,LI L.Carotenoid metabolism:Biosynthesis,regulation,and beyond[J].J Integr Plant Biol,2008,50(7):778-785.
[11] ?LVAREZ D,VOB B,MAASS D,et al.Carotenogenesis is regulated by 5'UTR-mediated translation of phytoene synthase splice variants[J].Plant Physiol,2016,172(4):2314-2326.
[12] GIORIO G,STIGLIANI A L,D'AMBROSIO C.Phytoene synthase genes in tomato (Solanum lycopersicum L.)-new data on the structures,the deduced amino acid sequences and the expression patterns[J].FEBS J,2008,275(3):527-535.
[13] AMPOMAH-DWAMENA C,DRIEDONKS N,LEWIS D,et al.The phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content[J].BMC Plant Biol,2015,15(185):1-14.
[14] OBRERO ?,GONZ?LEZ-VERDEJO C I,ROM?N B,et al.Identification,cloning,and expression analysis of three phytoene synthase genes from Cucurbita pepo[J].Biol Plant,2015,59(2):201-210.
[15] QIN X Q,COKU A,INOUE K,et al.Expression,subcellular localization,and cis-regulatory structure of duplicated phytoene synthase genes in melon (Cucumis melo L.)[J].Planta,2011,234(4):737-748.
[16] WELSCH R,WUST F,BAR C,et al.A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional persification of phytoene synthase genes[J].Plant Physiol,2008,147(1):367-380.
[17] LI F Q,VALLABHANENI R,YU J,et al.The maize phytoene synthase gene family:Overlapping roles for carotenogenesis in endosperm,photomorphogenesis,and thermal stress tolerance[J].Plant Physiol,2008,147(3):1334-1346.
[18] FLOWERIK A,ALOK A,KUMAR J,et al.Characterization and expression analysis of phytoene synthase from bread wheat (Triticum aestivum L.)[J].PLoS One,2016,11(10):1-18.
[19] WANG Z,ZHANG L,DONG C,et al.Characterization and functional analysis of phytoene synthase gene family in tobacco[J].BMC Plant Biology,2021,21(32):1-18.
[20] JANG S J,JEONG H B,JUNG A,et al.Phytoene synthase 2 can compensate for the absence of PSY1 in the control of color in Capsicum fruit[J].J Exp Bot,2020,71(12):3417-3427.
[21] PARADA R,ROYO C,GADALETA A,et al.Phytoene synthase 1(Psy-1) and lipoxygenase 1(Lpx-1) genes influence on semolina yellowness in wheat mediterranean germplasm[J].Int J Mol Sci,2020,21(13):46-69.
[22] ABDOLLAHZADEH T,NIAZI A,MOGHADAM A,et al.Phytoremediation of petroleum-contaminated soil by Salicornia:From PSY activity to physiological and morphological communications[J].Environ Technol,2019,40(21):2789-2801.
[23] AHRAZEM O,RUBIO-MORAGA A,LOPEZ R C,et al.The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron's apocarotenoid precursors[J].J Exp Bot,2010,61(1):105-119.
[24] AHRAZEM O,DIRETTO G,ARGANDONA PICAZO J,et al.The specialized roles in carotenogenesis and apocarotenogenesis of the phytoene synthase gene family in saffron[J].Front Plant Sci,2019,10(249):1-16.
[25] AHRAZEM O,RUBIO-MORAGA A,BERMAN J,et al.The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme[J].New Phytol,2016,209(2):650-663.
[26] AHRAZEM O,RUBIO-MORAGA A,ARGANDONA PICAZO J,et al.Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron[J].Plant Mol Biol,2016,91(3):355-374.
[27] CERDA A,MORENO J C,ACOSTA D,et al.Functional characterisation and in silico modelling of MdPSY2 variants and MdPSY5 phytoene synthases from Malus domestica[J].J Plant Physiol,2020,17(20):1-35.
[28] MISHIBA K I,NISHIDA K,INOUE N,et al.Genetic engineering of eggplant accumulating β-carotene in fruit[J].Plant Cell Rep,2020,39(8):1029-1039.
[29] 洪敏,石丝,何珊珊,等.VIGS 诱导 PSY 基因沉默对枇杷果实类胡萝卜素积累的影响[J].分子植物育种,2018,16(6):82-87.HONG M,SHI S,HE S S,et al.Effects of VIGS-induced PSY gene silencing on carotenoid accumulation in fruit of Eriobotrya japonica Lindl[J].Molecular Plant Breeding,2018,16(6):82-87.
[30] 史艳梅,魏攀,陈媛媛,等.烟草ζ-胡萝卜素脱氢酶基因的克隆和功能分析[J].烟草科技,2015,48(9):1-8.SHI Y M,WEI P,CHEN Y Y,et al.Cloning and functional analysis of ζ-carotene desaturase gene in Nicotiana tabacum[J].Tobacco Science & Technology,2015,48(9):1-8.
[31] PARK H,KREUNEN S S,CUTTRISS A J,et al.Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis,prolamellar body formation,and photomorphogenesis[J].Plant Cell,2002,14(2):321-332.
[32] ISAACSON T,RONEN G,ZAMIR D,et al.Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants[J].Plant Cell,2002,14(2):333-342.
[33] 史艳梅,王燃,杨军,等.烟草类胡萝卜素异构酶基因的克隆及功能研究[J].中国烟草学报,2014,20(6):138-143.SHI Y M,WANG R,YANG J,et al.Cloning and functional analysis of CRTISO gene in Nicotiana tabacum[J].Acta Tabacaria Sinica,2014,20(6):138-143.
[34] KACHANOVSKY D E,FILLER S,ISAACSON T,et al.Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids[J].Proc Natl Acad Sci USA,2012,109(46):19021-19026.
[35] KIM S H,KIM Y H,AHN Y O,et al.Downregulation of the lycopene ε-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli[J].Physiol Plant,2013,147(4):432-442.
[36] SHI Y,LIU P,XIA Y,et al.Downregulation of the lycopene ε-cyclase gene confers tolerance to salt and drought stress in Nicotiana tabacum[J].Acta Physiol Plant,2015,37(210):1-15.
[37] SHI Y M,WANG R,LUO Z P,et al.Molecular cloning and functional characterization of the lycopene epsilon-cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum[J].International Journal of Molecular Sciences,2014,15(8):14766-14785.
[38] KIM J,DELLAPENNA D.Defining the primary route for lutein synthesis in plants:The role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3[J].Proc Natl Acad Sci USA,2006,103(9):3474-3479.
[39] WELSCH R,BEYER P,HUGUENEY P,et al.Regulation and activation of phytoene synthase,a key enzyme in carotenoid biosynthesis,during photomorphogenesis[J].Planta,2000,211(6):846-854.
[40] TOLEDO-ORTIZ G,HUQ E,RODRIGUEZ-CONCEPCION M.Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors[J].Proc Natl Acad Sci USA,2010,107(25):11626-11631.
[41] SCHOFIELD A,PALIYATH G.Modulation of carotenoid biosynthesis during tomato fruit ripening through phytochrome regulation of phytoene synthase activity[J].Plant Physiol Biochem,2005,43(12):1052-1060.
[42] YOO H J,KIM J H,PARK K S,et al.Light-controlled fruit pigmentation and flavor volatiles in tomato and Bell pepper[J].Antioxidants (Basel),2019,9(14):1-18.
[43] XIE B X,WEI J J,ZHANG Y T,et al.Supplemental blue and red light promote lycopene synthesis in tomato fruits[J].Journal of Integrative Agriculture,2019,18(3):590-598.
[44] GIULIANO G,BARTLEY G E,SCOLNIK P A.Regulation of carotenoid biosynthesis during tomato development[J].Plant Cell,1993,5(4):379-387
[45] PECKER I,GABBAY R,CUNNINGHAM F X J,et al.Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening[J].Plant Mol Biol,1996,30(4):807-819.
[46] RONEN G,COHEN M,ZAMIR D,et al.Regulation of carotenoid biosynthesis during tomato fruit development:Expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta[J].Plant J,1999,17(4):341-351.
[47] 于安东,滕珂,檀鹏辉,等.沟叶结缕草ZmPSY 基因启动子对拟南芥的转化及功能分析[J].中国草地学报,2018,40(3):3-9.YU A D,TENG K,TAN P H,et al.Functional analysis of ZmPSY gene promoter from Zoysia matrella using transgenic Arabidopsis[J].Chinese Journal of Grassland,2018,40(3):3-9.
[48] 王艳,田红梅,张建,等.K+、Mn2+对番茄果实中番茄红素积累及其关键酶基因表达的影响[J].中国瓜菜,2016,29(8):9-12.WANG Y,TIAN H M,ZHANG J,et al.Effect of K+ and Mn2+ on lycopene content and related gene expression pattern in tomato fruit[J].China Cucurbits and Vegetables,2016,29(8):9-12.
[49] LUAN Y T,WANG S S,WANG R Q,et al.Accumulation of red apocarotenoid β-citraurin in peel of a spontaneous mutant of huyou (Citrus changshanensis) and the effects of storage temperature and ethylene application[J].Food Chem,2020,309(30):125705.1-125705.8.
[50] POLA W,SUGAYA S,PHOTCHANACHAI S.Influence of postharvest temperatures on carotenoid biosynthesis and phytochemicals in mature green chili (Capsicum annuum L.)[J].Antioxidants (Basel),2020,9(3):203-216.
[51] WELSCH R,MAASS D,VOEGEL T,et al.Transcription factor RAP2.2 and its interacting partner SINAT2:Stable elements in the carotenogenesis of Arabidopsis leaves[J].Plant Physiol,2007,145(3):1073-1085.
[52] OSORIO C E.The role of orange gene in carotenoid accumulation:Manipulating chromoplasts toward a colored future[J].Front Plant Sci,2019,10(30):1-7.
[53] LU S,VAN E J,ZHOU X J,et al.The cauliflower or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation[J].Plant Cell,2006,18(12):3594-3605.
[54] PARK S,KIM H S,JUNG Y J,et al.Orange protein has a role in phytoene synthase stabilization in sweetpotato[J].Sci Rep,2016,6(33):1-12.
[55] ZHOU X,WELSCH R,YANG Y,et al.Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis[J].Proc Natl Acad Sci USA,2015,112(11):3558-3563.
[56] LLORENTE B,MONTILLA T S,MORELLI L,et al.Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development[J].Proc Natl Acad Sci USA,2020,117(35):21796-21803.
植物生长需要光作为能量进行光合作用,而且光还是重要的植物发育调控信号。在植物光信号传导调控过程中,存在大量重要的调控因子,这些调控因子与光敏色素等光受体蛋白等进行协同调控,共同参与光信号传导途径中一系列相关蛋白的翻译调控,从而影响植物暗形...
生长素参加植物生长发育的许多过程,调控很多生理反应,在植物的整个生命周期中都发挥着调控作用,比如根和茎的发育以及生长、维管束组织的形成和分化发育、器官的衰老以及植物的向地和向光反应等。生长素可以直接作用于细胞膜或胞内组分,从而影响一...
植物miRNA是长度约为22nt的小RNA,它通过与RNA诱导沉默复合体(RNA-inducedsilencingcomplex,RISC)结合,切割靶mRNA,抑制靶mRNA的翻译或介导靶DNA甲基化来调控基因的表达[1,2].自1993年,Lee等[3]从秀丽线虫(Caenorhabditiselegan...
化感作用(Allelopathy)是植物在长期进化的过程中形成的一种适应机制,有利于保持本物种在空间和资源竞争中的优势[1].植物释放到环境中的化感物质(Allelochemical)通常为次生代谢产物(如酚酸类化合物、萜类化合物以及炔类化合物等),几乎可以由植物的...
SA在调控种子应对低温胁迫的响应中发挥着重要作用, 适宜浓度的SA能提高低温胁迫下种子的萌发和幼苗的生长。低温逆境下, SA通过诱导一系列与低温耐受性相关的反应进程, 从而提高种子的耐寒性。...