大学生数学建模竞赛,由教育部高教司和中国工业与应用数学学会主办,创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,同时成为高等院校一项重大的课外科技活动。尤其2014年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。每年的9月份举办,三人为一组,比赛时间共三天,最终通过论文的形式来体现,以创新意识、团队精神、重在参与、公平竞争为宗旨,旨在培养大学生的创新意识与团队精神。
一、大学生数学建模竞赛培训的重要性
数学建模竞赛作为教育部四大学科竞赛之首,规模最大,影响最大。因此,数学建模竞赛培训显得尤为重要。它有利于让学生尽早了解并掌握建模的基础理论知识及相关应用软件;有利于培养学生分析问题和解决实际问题的能力;有利于培养学生的团队合作精神,使队员间尽早磨合,相互了解;有利于培养学生的创新意识和发散思维;有利于训练学生快速获取有用信息和资料的能力;有利于增强学生的写作技能和排版技术等。
通过参加数学建模竞赛,受到了一次科学研究的初步训练,初步具备了科学研究的能力,提高了自身的分析问题和解决问题的能力以及计算机应用能力,培养了刻苦钻研问题的精神以及与他人友好合作的团队精神,培养了敢于战胜困难的坚强意志和创新能力,这些能力和精神为各自今后的学习和工作都带来了巨大的影响。因为参与数学建模比赛,许多学生收获了知识,取得了荣誉,参赛队员的共同体会是:一次参赛,终生受益。
二、培训中创新方法--案例模板式教学
数学建模培训一般是通过给学生讲解数学建模的基本知识与理论,相关的数学软件及软件包,辅以讲座,上机,讨论等方式,让学生对数学建模的基本方法及相关数学软件的使用有一定的了解,对数学建模的基本思想有基本把握。
在培训中,通过对以往竞赛试题的分析,将近几年的数学建模竞赛分为两大类:固定式问题和开放式问题,采用案例模板式教学对参加建模竞赛的同学进行辅导。其中,固定式问题指让学生对固定的有一定物理背景的问题进行数学建模求解;开放式问题指让学生准确把握题意后能充分根据自己的喜好,选取不同方向或方法进行建模求解。例如:
2013年全国大学生数学建模大赛A题《车道被占用对城市道路通行能力的影响》为典型的固定式题目,要求学生对已给的视频数据确定通行能力的数学模型,并且求出排队长度。而2010年全国大学生数学建模竞赛B题《2010年上海世博会影响力的定量评估》为典型的开放式题目,让学生选取感兴趣的某个侧面,利用互联网数据,建立数学模型,使学生在准确把握题意后能充分根据自己的喜好,选取不同方向进行建模求解,相对于固定问题开放性较强。
因此,要求教师在数学建模培训中,既要突出固定式的求解思路,又要注意培养学生开放式的发散思维。具体表现为:在固定求解思路上,要包括深刻理解题意,挖掘问题内部的区别,结合已有的数学建模基础、数学建模基本方法、数学建模特殊方法,通过对具体竞赛题的分析,总结出相关类型问题的数学求解方法;在开放性问题上,充分调动学生的积极性,让学生在查阅相关资料后,进行讨论交流,各抒己见,从各个层面,多角度的找出可行性强的数学建模方法。求解思路如下图1和图2所示。
三、结束语
数学建模培训是对大学数学教学改革的一次推动,是对高校教学水平、管理水平的大检验,是对指导教师综合实力的展示和提升,也是对学生各种能力和综合素质的一次提高,参加过建模的同学收获很多,不但领会到数学之美,建模之乐,还体会到团队合作的强大,专业交叉的益处,可以说对学生是一个专业,性格,心智等全方面的锻炼和提高。
通过对大学生数学建模竞赛培训中教学创新方法的初步探究,数学建模培训变得更加系统化、专业化,为学生参加各级数学建模竞赛提供了更好地学习实践和交流的平台,为培养学生的专业建模能力探索了新的途径和方法。
参考文献:
[1]司守奎等。数学建模算法与应用[M].北京:国防工业出版社,2012.
[2]姜启源。数学模型[M].北京:高等教育出版社,2011.
[3]张万龙。数学建模方法与案例[M].北京:国防工业出版社,2014.
[4]李汉龙。数学建模入门与提高[M].北京:国防工业出版社,2013.
[5]华罗庚。数学模型选谈(走向数学从书)[M].长沙:湖南教育出版社,1991.
[6]刘来福。数学模型与数学建模[M].北京:北京师范大学出版杜,1997.
[7]谭永基。数学模型[M].上海:复旦大学出版社,1997.
[8]吴翔。吴孟达。数学建模的理论与实践[M].北京:国防科技大学出版社,1999.
[9]单峰。数学模型[M].北京:国防工业出版社,2011.
随着现代数学的进步和发展,应用数学正在逐步向现代应用方面靠拢,范围也在逐步扩大,从最开始的力学和物理学等,到现在已经扩展到生物、化学、经济等诸多现代科学领域。...
随着时代的变迁,社会对于人才的要求逐渐多样化,传统的人才培养模式已经不能满足当前对于人才的期望,教育的改革势在必行[1]。而作为一切理工科计算基础的高等数学,则是针对培养新型人才教育改革的一个很好的切入点。...
数学建模(Mathematical Modeling)是近几十年来出现的新词汇,但是运用数学方法解决那些数量规律的实际问题,却是始终伴随着人类社会的产生和发展的。...
学生缺乏应用能力,将数学建模融入教学中,将理论知识和实际生活中的问题有机结合,在两者之间构造了一座桥梁,激发学生的兴趣,学生自发的学习扩展,引导培养学生的探讨应用能力。在各类数学建模竞赛中,可以锻炼和发展学生的数学建模能力。...
数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养。数学建模主要表现为“发现和提出问题,建立和求解模型,检验和完善模型,分析和解决问题”....
数学建模(MathematicalModeding)是对现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到一个数学结构的过程[1].美国大学生数学建模竞赛(MCM/ICM),是一项国际级的竞赛项目,为现今各类...
社会高速发展,人们会在诸多领域遇见纷繁芜杂的非机构性数据,如在互联网、超市、银行等企业以及国内外高校的科研与教学中都会出现不同类型的数据或数据集。...
本研究基于COVID-19传播机制重新建立SEIR数学模型,结合国家卫健委发布的全国感染人数,对模型参数进行估计,得到了精确的数学模型。通过数学模型的精确分析和有效预测,提示对潜伏期人群和感染人群进行严格隔离,同时不断提高患者的移出率,可有效防控疫情。...
一、数学建模数学建模是对一个实际问题,为了一个特定目的,根据特有的内在规律,做出必要的简化假设,运用适当的数学工具,借助数学语言刻画和描述一个实际问题,得到一个数学结构,然后经过数学处理得到定量或定性结果,供人们分析、决策、预报和控制。如...
本文根据企业需求,从路径优化数学模型与概率统计入手,阐述算法构建,以期提高企业经济效益和参与人员创新、严谨、衔接的数学思维。...