1 高中开设数学建模课程的背景
在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。
要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。
国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。
第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。
第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。当前的高中数学课程就是教师讲基本的数学知识,学生记忆、计算、生搬硬套的过程,造成高中学生知识面窄,思维不够发散,与高中数学教学的任务严重不符,脱离了真正数学教学的轨道。
第三,一些高中数学教师教学方法单一,纯粹就是黑板粉笔授课,实行满堂灌,不仅缺乏多媒体等现代化教学手段教学,更是没有所谓的数学实验课程。这样的教学方法造成学生被动学习,无法理解,无法应用,导致大批学生产生厌学情绪。教师讲解基本的数学内容,要求学生记住公式,然后利用公式和常用的方法去做题,其目的是去应对高考。对高中学生进行问卷调查发现,当前的高中学生中有 80% 多的学生普遍认为数学很难学,不能理解,更不用说去应用。当前的高中数学教学模式使得学生更加反感数学学习,从而使得高中数学教学效果很不理想。
随着社会的发展、高考的改革,国家也认识到高中数学教学亟待进行改革,很多学校也进行了一系列改革。
1)增加选修教材,改变高中数学的教学内容,注重数学知识与现实问题的结合,引导高中学生去发现实际问题与数学之间的联系,提高高中学生对数学的兴趣,增强高中学生学习数学的信心。更有些学校开设了高中数学建模课程,对高中学生进行初步的数学建模教育,让学生了解数学的用处。
2)进行数学教师统一备课,使用现代化教学手段,特别是多媒体教学,改进数学教学的方法,提高数学教师的专业知识水平和数学素养,加强数学师资队伍建设。虽然进行了一系列改革,但在当前资源条件下,高中数学教师知识面窄,难以适应数学建模课程的教学,因此需要高中数学教师重新学习、提高认识,在数学教学的认识上有一个本质的改变。基于以上情况,高中数学建模课程的开设是非常有必要的,能很好地解决高中数学与社会实际的脱节问题,借助数学建模课堂将高中数学内容联系到生活中去,同时也可以推动当前高中数学课程的改革与发展。
2 高中开设数学建模课程的意义
开设高中数学建模课程有利于推动高中数学课程的教学改革和发展 数学是一切学科特别是理工类学科的基础,只有学好了数学,才有可能继续研究。高中数学教学的主要目的是让学生掌握数学基础知识,并将这些数学知识应用到实际问题中去,培养和提高学生的计算能力、逻辑思维能力、不断创新能力和理论联系实际的能力。
传统的高中数学教学进行的是"满堂灌"教学,以应试为主,根本目的是顺利通过高考。此模式下培养出来的学生有很多"低分高能",不具备解决和处理社会实际问题的能力,使得学生遇到实际问题就束手无策,有些学生对生活中遇到的简单数学问题都无法解决。开设高中数学建模课程的目标是对高中数学教学进行改革,找到改革的路径,使之摆脱当前高中数学课程所面临的局面,提高高中学生对数学课程的兴趣,为高中学生进入大学继续深造奠定基础,促进高中学生融入生活中来,真正培养出高素质的合格人才。
开设高中数学建模课程有利于当前高中教育教学的整体发展
1)开设高中数学建模课程是当前高中教育教学自身发展的需要。虽然很多高中的学生都是成绩优异的学生,但是仍旧有的学校生源较差,学生的素质较低。而且对于大部分高中的学生来说,数学普遍很差,对数学的学习不感兴趣。"满堂灌"的教学方式绝对不适合学生的学习,教师只讲授高中数学课本上的内容,不仅达不到高中数学教学的根本目标,也更加让学生产生厌恶学习数学的情绪,导致数学教学开展不顺利或者无法开展。反之,如果将实际问题带入高中数学教学中来,学生会感觉非常有趣,从而产生兴趣,也能够通过数学建模解决一些实际问题。同时,如果高中学生都掌握了一定的数学建模知识,进入社会或大学后,也会有所帮助的。
2)开设高中数学建模课程是国家培养高技能人才的需要。随着社会的发展,国家所需要的人才以实用型为主。
实用型人才的储备决定着国家的命运,任何时候对人才的需求都是以解决实际问题为主的。高中培养的人才一部分进入高校继续深造,也有相当一部分是进入社会工作的,因此,高中培养的学生也应该以解决实际问题为主,这也是企业、社会和国家所需要的人才。企业对操作型人才需求比例非常大,当高中学生掌握了数学建模知识,就能够快速学会操作企业中的设备,成为合格的企业所需的人才。
因此,开设高中数学建模课程,具有长远意义。
通过调查可以看出,提高动手能力,学生才能有更好的前途,学校也有良好的发展,最终形成良性循环。而高中数学建模课程的开设和发展就是为了培养高中学生解决社会实际问题的能力。毋庸置疑,高中数学教学必须针对高中学生的实际基础,改变和调整高中数学教学大纲和计划,做到理论联系实际,对高中数学课程进行彻底的改革,让高中学生进行数学建模活动,掌握解决社会实际问题的数学方法。
3 高中数学建模课程的定位
当前,数学建模活动在大学生中正如火如荼地开展,但在高中学生中的数学建模活动还处于初始阶段,大部分高中学校没有开设数学建模课程和参与数学建模活动,即便一些开设了数学建模课程的高中学校也是形同虚设,只是高中数学课程的辅助课程。对于高中数学课程的教学目标来说,开设高中数学建模课程是必须的,其定位也与大学生数学建模有着很大不同。
高中学生和大学生相比,起点不同,对数学教学内容的要求也不尽相同 大学生可以说完成了高中数学的学业,同时具有了一定的社会经历,数学认知比较全面。因此,大学生在进行数学建模活动时涉及范围广,是一些比较现实的复杂问题,更甚至可以是目前还没解决的社会热点问题。而高中的学生心理不够成熟,比较年轻,社会阅历明显不足,因此,高中数学所涉及的数学建模问题应定位于学生的生活实际问题,具有趣味性,能吸引他们有兴趣去主动解决。
高中学生和大学生相比,所学的数学知识不在一个档次 大学生数学建模活动已经涉及非常高深的数学专业内容,要用到计算机编程、运筹学、线性规划等方面的知识,可以解决非常复杂的社会热点问题;而高中学生的数学建模活动是以高中数学内容为基础,要求高中学生的数学建模问题是用高中数学知识能解决的问题,类似于数学应用题,但又不是数学应用题,相比应用题更注重实际背景。
高中学生和大学生数学建模活动的侧重点不同 大学生的数学建模活动注重数学建模的过程和解题思路,注重所建立的数学模型的实际效果和应用,对于计算机编程要求很高,对各种数学难题的计算也有着很高的要求;而高中学生的数学建模活动着重于高中学生对数学建模的认识,重在让高中学生产生数学建模思想,使高中学生产生用数学知识解决社会问题的想法,学会简单的数学建模的方法,总之,高中数学建模活动与大学生的数学建模活动存在较大差异,对于高中的数学建模课程必须定好位,才可能达到开设数学建模课程的目的。
参考文献:
[1] 李涛 . 中等职业学校数学建模课程建设之研究 [D]. 山东 : 鲁东大学 ,2013.
[2] 郑珺影。 数学建模在高中教学的应用[J]. 才智 ,2009(35)。
随着现代数学的进步和发展,应用数学正在逐步向现代应用方面靠拢,范围也在逐步扩大,从最开始的力学和物理学等,到现在已经扩展到生物、化学、经济等诸多现代科学领域。...
随着时代的变迁,社会对于人才的要求逐渐多样化,传统的人才培养模式已经不能满足当前对于人才的期望,教育的改革势在必行[1]。而作为一切理工科计算基础的高等数学,则是针对培养新型人才教育改革的一个很好的切入点。...
数学建模(Mathematical Modeling)是近几十年来出现的新词汇,但是运用数学方法解决那些数量规律的实际问题,却是始终伴随着人类社会的产生和发展的。...
学生缺乏应用能力,将数学建模融入教学中,将理论知识和实际生活中的问题有机结合,在两者之间构造了一座桥梁,激发学生的兴趣,学生自发的学习扩展,引导培养学生的探讨应用能力。在各类数学建模竞赛中,可以锻炼和发展学生的数学建模能力。...
数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养。数学建模主要表现为“发现和提出问题,建立和求解模型,检验和完善模型,分析和解决问题”....
数学建模(MathematicalModeding)是对现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到一个数学结构的过程[1].美国大学生数学建模竞赛(MCM/ICM),是一项国际级的竞赛项目,为现今各类...
社会高速发展,人们会在诸多领域遇见纷繁芜杂的非机构性数据,如在互联网、超市、银行等企业以及国内外高校的科研与教学中都会出现不同类型的数据或数据集。...
大学生数学建模竞赛,由教育部高教司和中国工业与应用数学学会主办,创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,同时成为高等院校一项重大的课外科技活动。尤其2014年,来自全国33个省/市/自...
本研究基于COVID-19传播机制重新建立SEIR数学模型,结合国家卫健委发布的全国感染人数,对模型参数进行估计,得到了精确的数学模型。通过数学模型的精确分析和有效预测,提示对潜伏期人群和感染人群进行严格隔离,同时不断提高患者的移出率,可有效防控疫情。...
一、数学建模数学建模是对一个实际问题,为了一个特定目的,根据特有的内在规律,做出必要的简化假设,运用适当的数学工具,借助数学语言刻画和描述一个实际问题,得到一个数学结构,然后经过数学处理得到定量或定性结果,供人们分析、决策、预报和控制。如...