化工论文

您当前的位置:学术堂 > 化学论文 > 化工论文 >

新型纳米材料在传感器中的运用结论与参考文献

来源:学术堂 作者:陈老师
发布于:2016-11-16 共14675字
  本篇论文快速导航:

展开更多

  结论
  
  采用纳米材料构建传感界面,是当前电化学传感领域的研究热点之一。纳米材料具有优良的导电性、良好的电催化性能、大的比表面积、较强的吸附能力等优点,当用于修饰电极时,能够很好地改善电极界面性能。本论文制备了几种新型纳米材料,并构建电化学传感器,主要包括以下几个部分:
  
  1、以电化学还原氧化石墨烯的方法制备石墨烯(RGO),构建镉离子电化学传感器。
  
  石墨烯大的比表面积、良好的导电性、较强的吸附能力以及电催化性能明显提高了镉离子的响应电流信号,显着地改善了电极的分析性能。该传感器制备方法简便快速,能够反复多次使用,并且可以应用于实际样品测定。
  
  2、采用葡萄糖作为还原剂与聚乙烯吡咯烷酮(PVP)为稳定剂,制备一种新型绿色金纳米颗粒(AuNP),构建无酶的过氧化氢(H2O2)电化学传感器,该传感器具有灵敏度高,选择性好,线性范围宽,检测限低等优点。
  
  3、选用电化学还原氧化石墨烯法制备石墨烯,运用氧化亚铜纳米球为牺牲模板快速合成硫化铜空心球(CuSHNs),基于石墨烯和硫化铜空心球纳米复合材料构建无酶的过氧化氢电化学传感器。由于石墨烯具有大的比表面积、良好的导电性等优点,且能够与硫化铜空心球产生良好的协同作用,显着提高了传感器对过氧化氢的电催化活性。所研制的传感器具有制作方法简单、灵敏度高、抗干扰能力强等优点,为石墨烯复合材料制备传感器提供了一种新的方法。


  参考文献
  
  [1] 汪尔康。 21 世纪的分析化学。 北京: 科学出版社, 1999: 217-218.
  
  [2] 周鑫, 杨健茂, 刘建允, 等。 静电纺 ZnO/碳复合纳米纤维修饰电极制备及对痕量铅的测定。 分析化学, 2014, 42(7):985-990.
  
  [3] Zhao J, Yan Y L, Li G X, et al. An amperometric biosensor for the detection of hydrogen peroxidereleased from human breast cancer cells. Biosensors and Bioelectronics, 2013, 41: 815-819.
  
  [4] Tarlani A, Fallah M, Lotfi B, et al. New ZnO nanostructures as non-enzymatic glucose biosensors.
  
  Biosensors and Bioelectronics, 2015, 67: 601-607.
  
  [5] Tabrizi M A, Shamsipur M. A label-free electrochemical DNA biosensor based on covalent im-mobilization of salmonella DNA sequences on the nanoporous glassy carbon electrode. Biosensors andBioelectronics, 2015, 69: 100-105.
  
  [6] Gu Y J, Ju C, Niu Y J, et al. Detection of circulating tumor cells in prostate cancer based oncarboxylated grapheneoxide modified light addressable potentiometric sensor. Biosensors andBioelectronics, 2015, 66: 24-31.
  
  [7] Wang S P, Wu Z S, Shen G L, et al. A novel electrochemical immunosensor based on ordered Aunano-prickle clusters. Biosensors and Bioelectronics, 2008, 24(4): 1020-1026.
  
  [8] 张先恩。 生物传感器。 北京: 化学工业出版社, 2005: 58-150.
  
  [9] Kato N, Caruso F. Homogeneous, Competitive Fluorescence Quenching Immunoassay Based on GoldNanoparticle/Polyelectrolyte Coated Latex Particles. Journal of Physical Chemistry B, 2005, 109(42):l9604-l9612.
  
  [10] Wei H, Guo Z B, Zhu Z W, et a1. Sensitive Detection of Antibody against Antigen Fl of YersiniaPestis by an Antigen Sandwich Method using a Portable Fiber Optic Biosensor. Sensors and ActuatorsB: Chemical, 2007, 127(2): 525-530.
  
  [11] Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals ofthe New York Academy of Sciences, 1962, 102(1): 29-45.
  
  [12] Chen K J, Pillai K C, Hwang B J, et al. Bimetallic PtM (M = Pd, Ir) nanoparticle decoratedmulti-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosensorsand Bioelectronics, 2012, 33(1): 120-127.
  
  [13] Ibupoto Z H, Shah S M U A, Khun K, Willander M. Electrochemical L-lactic acid sensor based onimmobilized ZnO nanorods with lactate oxidase. Sensors, 2012, 12(3): 2456-2466.
  
  [14] Cai X J, Gao X, Wang L S, Wu Q, Lin X F. A layer-by-layer assembled and carbon nanotubes/goldnanoparticles-based bienzyme biosensor for cholesterol detection. Sensors and Actuators B: Chemical,2013, 181: 575-583.
  
  [15] Ivekovi? D, Japec M, Solar M, ?ivkovi? N. Amperometric uric acid biosensor with improvedanalytical performances based on alkaline-stable H2O2transducer. International Journal ofElectrochemical Science, 2012, 7: 3252-3264.
  
  [16] Updike S J, Hicks G P. The Enzyme Electrode. Nature, 1967, 214(5092): 986-988.
  
  [17] Daigle F, Leech D. Reagentless tyrosinase enzyme electrode: effects of enzyme loading,electrolyte pH,ionic strength, and temperature. Analytical Chemistry, 1997, 69(20): 4108-4112.
  
  [18] Guilbaul G G, Montalvo J G. An Enzyme Electrode for Substrate Urea. Journal of the AmericanChemical Society, 1970, 92(8): 2533-2534.
  
  [19] Divies C. Remarks on ethanol oxidation by an acetobaeter xylinum microbial eleetrode. Annals ofMicrobiology, 1975, 126(2): 175-186.
  
  [20] Liu Y, Wang D W,You T Y, et al. A novel and simple route to prepare a Pt nanoparticle-loaded carbonnanofiber electrode for hydrogen peroxide sensing. Biosensors and Bioelectronics, 2011, 26(11):4585-4590.
  
  [21] Gao H C, Xiao F, Duan H W, et al. One-step electrochemical synthesis of PtNi nanoparticle-graphenenanocomposites for nonenzymatic amperometric glucose detection. ACS Applied Materials &Interfaces, 2011, 3(8): 3049-3057.
  
  [22] Li F Y, Bai H Y, Dai Z H, et al. A nonenzymatic cholesterol sensor constructed by using porous tubularsilver nanoparticles. Biosensors and Bioelectronics, 2010, 25(10): 2356-2360.
  
  [23] Du J, Yue R R, Du Y K, et al. Nonenzymatic uric acid electrochemical sensor based ongraphene-modified carbon fiber electrode. Colloids and Surfaces A: Physicochemical and EngineeringAspects, 2013, 419: 94-99.
  
  [24] 石士考。 纳米材料的特性及其应用。 大学化学, 2001, 6(2): 39-42.
  
  [25] Daniel M C, Astrue D. Gold nanoparticles: assembly, supramolecular chemistry, quaumm-size-relatedproperties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004,104(1): 293-346.
  
  [26] 薛增泉。 纳米科技探索。 北京: 清华大学出版社, 2002: 1-101.
  
  [27] 张全勤, 张继文。 纳米技术新进展。 北京: 国防工业出版社, 2005: 46-102.
  
  [28] Gong K P, Dong Y, Mao L Q, et al. Novel electrochemical method for sensitive determination ofhomocysteine with carbon nanotube-based electrodes. Biosensors and Bioelectronics, 2004, 20(2):253-259.
  
  [29] Tsai Y C, Li S C, Liao S W. Electrodeposition of polypyrrole–multiwalled carbon nanotube–glucoseoxidase nanobiocomposite film for the detection of glucose. Biosensors and Bioelectronics, 2006,22(4): 495-500.
  
  [30] Shahrokhian S, Ghalkhani M, Adeli M, et al. Multi-walled carbon nanotubes with immobilised cobaltnanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetricdetermination of thioridazine. Biosensors and Bioelectronics, 2009, 24(11): 3235-3241.
  
  [31] Lin J H, He C Y, Zhang S S, et al. One-step synthesis of silver nanoparticles/carbonnanotubes/chitosan film and its application in glucose biosensor. Sensors and Actuators B, 2009,137(2): 768-773.
  
  [32] Du X, Miao ZY, Chen Q, etal. Facile synthesis of β-lactoglobulin-functionalized multi-wallcarbonnanotubes and gold nanoparticles on glassy carbon electrode for electrochemical sensing. Biosensorsand Bioelectronics, 2014, 62: 73-78.
  
  [33] Wang L, Wang X Y, Peng C, et al. Thiacalixarene covalently functionalized multiwalled carbonnanotubes as chemically modified electrode material for detection of ultratrace Pb2+ions. AnalyticalChemistry, 2012, 84(24): 10560-10567.
  
  [34] Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183-191.
  
  [35] Neto A H C, Guinea F, Geim A K, et al. The electronic propertiesof graphene. Reviews of ModernPhysics, 2009, 81(1): 109-162.
  
  [36] Ovidko I A. Mechanical properties of graphene. Reviews on Advanced Materials Science, 2013, 34(1):1-11.
  
  [37] Stankovich S, Dikin D A, Kohlhaas K M, et al. Graphene-based composite materials. Nature, 2006,442(7100): 282-286.
  
  [38] Han M Y, ?zyilmaz B, Zhang Y B, et al. Energy band-gap engineering of graphene nanoribbons.Physical Review Letters, 2007, 98(206805): 1-4.
  
  [39] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J].Nano Letters, 2008, 8(3): 902-907.
  
  [40] Shan C S, Yang H F, Niu L, et al. Direct electrochemistry of glucose oxidase and biosensing forglucose based on graphene. Analytical Chemistry, 2009, 81(6): 2378-2382.
  
  [41] Kim Y R, Bong S, Kim J S, et al. Electrochemical detection of dopamine in the presence of ascorbicacid using graphene modified electrodes. Biosensors and Bioelectronics, 2010, 25(10): 2366-2369.
  
  [42] Chen Q W, Zhang L Y, Chen G. Facile preparation of graphene-copper nanoparticle composite by insitu chemical reduction for electrochemical sensing of carbohydrates. Analytical Chemistry, 2012,84(1): 171-178.
  
  [43] Zhu L M, Luo L Q, Wang Z X. DNA electrochemical biosensor based on thionine-graphenenanocomposite. Biosensors and Bioelectronics, 2012, 35(1): 507-511.
  
  [44] Zhang Y Y, Bai X Y, Wang X M, et al. Highly sensitive graphene?Pt nanocomposites amperometricbiosensor and its application in living cell H2O2detection. Analytical Chemistry, 2014, 86(19):9459?9465.
  
  [45] Dutta D, Chandra S, Bahadur D, et al. SnO2Quantum Dots-Reduced Graphene Oxide Composite forEnzyme-Free Ultrasensitive Electrochemical Detection of Urea. Analytical Chemistry, 2014, 86(12) :5914-5921.
  
  [46] Hwa K Y, Subramani B. Synthesis of zinc oxide nanoparticles on graphene–carbon nanotube hybridfor glucose biosensor applications. Biosensors and Bioelectronics, 2014, 62: 127-133.
  
  [47] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-relatedproperties, and applications toward biology, catalysis, and nanotechnology. ChemicalReviews-Columbus, 2004, 104(1): 293-346.
  
  [48] El-Sayed M A. Some interesting properties of metals confined in time and nanometer space ofdifferent shapes. Accounts of Chemical Research, 2001, 34(4): 257-264.
  
  [49] Wang J, Yang L L, Reinhard B M, et al. Spectroscopic ultra-trace detection of nitroaromatic gas vaporon rationally designed two-dimensional nanoparticle cluster arrays. Analytical Chemistry, 2011, 83(6):2243-2249.
  
  [50] Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metalsurface plasmon resonance and its enhancement of the radiative and nonradiative properties ofnanocrystals of different shapes. Chemical Society Reviews, 2006, 35: 209-217.
  
  [51] Wang J, Boriskina SV, Wang H, Reinhard B M. Illuminating epidermal growth factor receptordensities on filopodia through plasmon coupling. ACS nano, 2011, 5(8): 6619-6628.
  
  [52] Wiley B, Sun Y G, Mayers B, Xia Y N. Shape-controlled synthesis of metal nanostructures: the case ofsilver. Chemistry A European Journal, 2005, 11(2): 454-463.
  
  [53] Zhang L, Wang E K, Dong S J, et al. Attachment of gold nanoparticles to glassy carbon electrode andits application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosensorsand Bioelectronics, 2005, 21(2): 337-345.
  
  [54] Wang L X, Bai J, Guo L P, et al. A novel glucose sensor based on ordered mesoporous carbon-Aunanoparticles nanocomposites. Talanta, 2011, 83(5): 1386-1391.
  
  [55] Hu C Y, Yang D P, Wang Z Y, et al. Improved EIS performance of an electrochemical cytosensor usingthree-dimensional architecture  as sensing layer. Analytical Chemistry, 2013, 85: 5200-5206.
  
  [56] 李理, 卢红梅, 邓留。 基于石墨烯和金纳米棒复合物的过氧化氢电化学传感器。 分析化学, 2013,41(5): 719-724.
  
  [57] Gatselou V A, Giokas D L, Prodromidis M I, et al. Rhodium nanoparticle-modified screen-printedgraphite electrodes for the determination of hydrogen peroxide in tea extracts in the presence ofoxygen. Talanta, 2015, 134: 482-487.
  
  [58] Dong X Y, Mi X N, Xu J J, et al. CdS Nanoparticles functionalized colloidal carbon particles:
  
  Preparation, characterization and application for electrochemical detection of thrombin. Biosensorsand Bioelectronics, 2011, 26(8): 3654-3659.
  
  [59] Huang T Y, Meng Q M, Jie G F. Silver nanowires-based signal amplification for CdSe quantum dotselectrochemiluminescence immunoassay. Biosensors and Bioelectronics, 2015, 66: 84-88.
  
  [60] Hu X F, Han H Y, Hua L J, et al. Electrogenerated chemiluminescence of blue emitting ZnSe quantumdots and its biosensing for hydrogen peroxide. Biosensors and Bioelectronics, 2010, 25(7): 1843-1846.
  
  [61] Du D, Ding J W, Tao Y, et al. CdTe nanocrystal-based electrochemical biosensor for the recognition ofneutravidin by anodic stripping voltammetry at electrodeposited bismuth film. Biosensors andBioelectronics, 2008, 24(4): 863-868.
  
  [62] Wen T T, Zhu W Y, Zhou X M, et al. Novel electrochemical sensing platform based on magneticfield-induced self-assembly of nanoparticles for clinical detection of creatinine.Biosensors and Bioelectronics, 2014, 56: 180-185.
  
  [63] Yang Z P, Zhang C J, Zhang J X, et al. Potentiometric glucose biosensor based on core–shellFe3O4-enzyme-polypyrrole nanoparticles. Biosensors and Bioelectronics, 2014, 51: 268-273.
  
  [64] Qian T, Yu C F, Wu S S, et al. Ultrasensitive dopamine sensor based on novel molecularly imprintedpolypyrrole coated carbon nanotubes. Biosensors and Bioelectronics, 2014, 58: 237-241.
  
  [65] 刘杰。 镉的毒性和毒理学研究进展。 中华劳动卫生职业病杂志, 1998, 16(1): 4-6.
  
  [66] 李军, 汪模辉, 陈文。 镉、铅、铬、铜的电化学分析。 广东微量元素科学, 2006, 13(7): 21-25.
  
  [67] Novoselov K. S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films.Science, 2004, 306(5696): 666-669.
  
  [68] Allen M J, Tung V C, Kaner R B. Honeycomb Carbon: A review of graphene. Chemical Reviews,2010, 110(1): 132-145.
  
  [69] Kwon S Y, Ciobanu C V, Petrova V, et al. Growth of semiconducting graphene on palladium. NanoLetters, 2009, 9(12): 3985-3990.
  
  [70] Park S J, Ruoff R S. Chemical methods for the production of graphenes. Nature Nanotechnology, 2009,4(4): 217-224.
  
  [71] Stoller M D, Park S J, Ruoff R S, et al. Graphene-based ultracapacitors. Nano Letters, 2008, 8(10):3498-3502.
  
  [72] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid StateCommunications, 2008, 146(9): 351-355.
  
  [73] Lee C G, Wei X D, Hone J, et al. Measurement of the elastic properties and intrinsic strength ofmonolayer graphene. Science, 2008, 321(5887): 385-388.
  
  [74] Bai X J, Wang L, Zong R L, et al. Performance enhancement of ZnO photocatalyst via synergic effectof surface oxygen defect and graphene hybridization. Langmuir, 2013, 29(9): 3097-3105.
  
  [75] Weng B, Wu J, Xu Y J, et al. Observing the role of graphene in boosting the two-electron reduction ofoxygen in grapheme-WO3nanorod photocatalysts. Langmuir, 2014, 30(19): 5574-5584.
  
  [76] Lv W, Tang D M, Yang Q H, et al. Low-temperature exfoliated graphenes: vacuum-promotedexfoliation and electrochemical energy storage. ACS Nano, 2009, 3(11): 3730-3736.
  
  [77] Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry. Chemical Society Reviews,2010, 39(8): 3157-3180.
  
  [78] Guo S J, Dong S J. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids andenergy and analytical applications. Chemical Society Reviews, 2011, 40(5): 2644-2672.
  
  [79] Guo Y L, Wu B, Ma Y Q, et al. Electrical assembly and reduction of graphene oxide in a singlesolution step for use in flexible sensors. Advanced Materials, 2011, 23(40): 4626-4630.
  
  [80] Tesarova E, Baldrianova L, Hocevar S B, et al. Anodic stripping voltammetric measurement of traceheavy metals at antimony film carbon paste electrode. Electrochimica Acta, 2009, 54(5): 1506-1510.
  
  [81] Sheela T, Basavanna S, Viswanatha R, et al. Barium hydrogen phosphate modified carbon pasteelectrode for the simultaneous determination of cadmium and lead by differential pulse anodicstripping voltammetry. Electroanalysis, 2011, 23(5): 1150-1157.
  
  [82] Li J, Guo S J, Zhai Y M, et al. Nafion-graphene nanocomposite film as enhanced sensing platform forultrasensitive determination of cadmium. Electrochemistry Communications, 2009, 11(5): 1085-1088.
  
  [83] Prakash S, Chakrabarty T, Singh A K, et al. Silver nanoparticles built-in chitosan modified glassycarbon electrode for anodic stripping analysis of As(III) and its removal from water. ElectrochimicaActa, 2012, 72(1): 157-164.
  
  [84] Arantes T M, Sardinha A, Baldan M R, et al. Lead detection using micro/nanocrystalline boron-dopeddiamond by square-wave anodic stripping voltammetry. Talanta, 2014, 128(1): 132-140.
  
  [85] Liu M C, Zhao G H, Tang Y T, et al. A simple, stable and picomole level lead sensor fabricated onDNA-based carbon hybridized TiO2nanotube arrays. Environmental Science & Technology, 2010,44(11): 4241–4246.
  
  [86] Berchmans S, Vergheese T M, Kavitha A L, et al. Electrochemical preparation of copper–dendrimernanocomposites: picomolar detection of Cu2+ions. Analytical and Bioanalytical Chemistry, 2008,390(3): 939-946.
  
  [87] Gong J M, Zhou T, Hu X L, et al. Stripping voltammetric detection of mercury(II) based on abimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode. AnalyticalChemistry, 2010, 82(2): 567-573.
  
  [88] Cote L J, Kim F, Huang J X. Langmuir-Blodgett assembly of graphite oxide single layers. Journal ofthe American Chemical Society, 2009, 131(3): 1043-1049.
  
  [89] Guo H L, Wang X F, Xia X H, et al. A green approach to the synthesis of graphene nanosheets. ACSNano, 2009, 3(9): 2653-2659.
  
  [90] Wang Z J, Zhou X Z, Zhang H, et al. Direct electrochemical reduction of single-layer graphene oxideand subsequent functionalization with glucose oxidase. The Journal of Physical Chemistry C, 2009,113(32): 14071-14075.
  
  [91] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530-1534.
  
  [92] Wang J, Lin Y H, Chen L. Organic-phase biosensors for monitoring phenol and hydrogen peroxide inpharmaceutical antibacterial products. Analyst, 1993, 118: 277-280.
  
  [93] Lee J W, Helmann J D. The PerR transcription factor senses H2O2by metal-catalysed histidineoxidation. Nature, 2006, 440: 363-367.
  
  [94] Lu X B, Zhou J H, Lu W, et al. Carbon nanofiber-based composites for the construction ofmediator-free biosensors. Biosensors and Bioelectronics, 2008, 23(8): 1236-1243.
  
  [95] Liu A P, Dong W J, Liu E J, et al. Non-enzymatic hydrogen peroxide detection using goldnanoclusters-modified phosphorus incorporated tetrahedral amorphous carbon electrodes.
  
  Electrochimica Acta, 2010, 55(6): 1971-1977.
  
  [96] Wu Z P, Yang S W, Chen Z, et al. Synthesis of Ag nanoparticles-decorated poly(m-phenylenediamine)hollow spheres and the application for hydrogen peroxide detection. Electrochimica Acta, 2013, 98:104-108.
  
  [97] Hurdis E C, Romeyn H. Accuracy of determination of hydrogen peroxide by cerate oxidimetry.Analytical Chemistry, 1954, 26: 320-325.
  
  [98] Cathcart R, Schwiers E, Ames B N. Detection of picomole levels of hydroperoxides using afluorescent dichlorofluorescein assay. Analytical Biochemistry, 1983, 134(1): 111-116.
  
  [99] Matsubara C, Kawamoto N, Takamura K. Oxo[5,10,15,20-tetra (4-pyridyl) porphyrinato] -titanium(IV) : an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst, 1992, 117:1781-1784.
  
  [100] Nogueira R F P, Oliveira M C, Paterlini W C. Simple and fast spectrophotometric determination ofH2O2in photo-Fenton reactions using metavanadate, Talanta, 2005, 66(1): 86-91.
  
  [101] Toyo'oka T, KashiwazakiT, Kato M. On-line screening methods for antioxidants scavengingsuperoxide anion radical and hydrogen peroxide by liquid chromatography with indirectchemiluminescence detection. Talanta, 2003, 60: 467-475.
  
  [102] Hanaoka S, Lin J M, Yamada M. Chemiluminescent flow sensor for H2O2based on thedecomposition of H2O2catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. AnalyticaChimica Acta, 2001, 426(1): 57-64.
  
  [103] Dai Z H, Liu S Q, Ju H X, et al. Direct electron transfer and enzymatic activity of hemoglobin in ahexagonal mesoporous silica matrix. Biosensors and Bioelectronics, 2004, 19(8): 861-867.
  
  [104] Miah M R, Ohsaka T. Cathodic detection of H2O2using iodide-modified gold electrode in alkalinemedia. Analytical Chemistry, 2006, 78: 1200-1205.
  
  [105] Liu C Y, Hu J M. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobinimmobilized on silver nanoparticles doped carbon nanotubes film. Biosensors and Bioelectronics,2009, 24(7): 2149-2154.
  
  [106] Lu W B, Liao F, Luo Y L, et al. Hydrothermal synthesis of well-stable silver nanoparticles and theirapplication for enzymeless hydrogen peroxide detection. Electrochimica Acta, 2011, 56(5):2295-2298.
  
  [107] Anjalidevi C, Dharuman V, Narayanan J S. Non enzymatic hydrogen peroxide detection at rutheniumoxide–gold nanoparticle–nafion modified electrode. Sensors and Actuators B, 2013, 182: 256-263.
  
  [108] Lei C X, Hu S Q, Shen G L, et al. An amperometric hydrogen peroxide biosensor based onimmobilizing horseradish peroxidase to a nano-Au monolayer supported by sol–gel derived carbonceramic electrode. Bioelectrochemistry, 2004, 65(1): 33-39.
  
  [109] Liao K M, Mao P, Han M, et al. A promising method for fabricating Ag nanoparticle modifiednonenzyme hydrogen peroxide sensors. Sensors and Actuators B, 2013, 181: 125-129.
  
  [110] Bian X J, Lu X F, E. Jin, Kong L R, et al. Fabrication of Pt/polypyrrole hybrid hollow microspheresand their application in electrochemical biosensing towards hydrogen peroxide , Talanta, 2010, 81:813-818.
  
  [111] Rodriguez M C, Rivas G A. Glucose biosensor prepared by the deposition of iridium and glucoseoxidase on glassy carbon transducer, Electroanalysis, 1999, 11(8): 558-564.
  
  [112] Kong L R, Lu X F, Bian X J, et al. Accurately tuning the dispersity and size of palladium particles oncarbon spheres and using carbon spheres/palladium composite as support for polyaniline in H2O2electrochemical sensing, Langmuir, 2010, 26(8): 5985-5990.
  
  [113] Yang X J, Wang Y H, Liu Y W, et al. A sensitive hydrogen peroxide and glucose biosensor based ongold/silver core–shell nanorods, Electrochimica Acta, 2013, 108: 39-44.
  
  [114] Janyasupab M, Liu C W, Zhang Y, et al. Bimetallic Pt–M (M = Cu, Ni, Pd, and Rh) nanoporous forH2O2based amperometric biosensors. Sensors and Actuators B, 2013, 179: 209-214.
  
  [115] RaveendranP, Fu J, Wallen S L. Completely “green” synthesis and stabilization of metalnanoparticles. Journal of the American Chemical Society, 2003, 125(46): 13940-13941.
  
  [116] Lei C H, Deng J Q. Hydrogen peroxide sensor based on coimmobilized methylene green andhorseradish peroxidase in the same montmorillonite-modified bovine serum albumin?glutaraldehydematrix on a glassy carbon electrode surface. Analytical Chemistry, 68: 3344-3349.
  
  [117] Lei C X, Wang H, Shen G L, et al. Immobilization of enzymes on the nano-Au film modified glassycarbon electrode for the determination of hydrogen peroxide and glucose. Electroanalysis, 2004, 16(9):736-740.
  
  [118] Wan J, Wang W N, Yin G, et al. Nonenzymatic H2O2sensor based on Pt nanoflower electrode.Journal of Cluster Science, 2012, 23(4): 1061-1068.
  
  [119] Lu W B, Liao F, Luo Y L, et al. Hydrothermal synthesis of well-stable silver nanoparticles and theirapplication for enzymeless hydrogen peroxide detection. Electrochimica Acta, 2011, 56(5):
2295-2298.
  
  [120] Bui M P N, Pham X H, Han K N, et al. Electrocatalytic reduction of hydrogen peroxide by silverparticles patterned on single-walled carbon nanotubes. Sensors and Actuators B, 2010, 150(1):
436-441.
  
  [121] Xu F G, Sun Y J, Zhang Y, et al. Graphene-Pt nanocomposite for nonenzymatic detection of hydrogenperoxide with enhanced sensitivity. Electrochemistry Communications, 2011, 13(10): 1131-1134.
  
  [122] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films.Science, 2004, 306(5696): 666-669.
  
  [123] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchabletransparent electrodes. Nature, 2009, 457(7230): 706-710.
  
  [124] Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Naturenanotechnology, 2008, 3(2): 101-105.
  
  [125] Guo Y L, Wu B, Liu H T, et al. Electrical assembly and reduction of graphene oxide in a singlesolution step for use in flexible sensors. Advanced Materials, 2011, 23(40): 4626-4630.
  
  [126] Ramadan S, Guo L R, Li Y J, et al. Hollow copper sulfide nanoparticle-mediated transdermal drugdelivery. small, 2012, 8(20): 3143-3150.
  
  [127] Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium spheres and their successfulapplication to the recyclable heterogeneous catalyst for suzuki coupling reactions. Journal of theAmerican Chemical Society, 2002, 124(26): 7642-7643.
  
  [128] Liu S F, Liu J, Han X P, et al. Electrochemical DNA biosensor fabrication with hollow goldnanospheres modified electrode and its enhancement in DNA immobilization and hybridization.Biosensors and Bioelectronics, 2010, 25(7): 1640-1645.
  
  [129] Maji T K, Matsuda R, Kitagawa S. A flexible interpenetrating coordination framework with abimodal porous functionality. Nature Materials, 2007, 6(2): 142-148.
  
  [130] Qi L M, Li J, Ma J M. Biomimetic morphogenesis of calcium carbonate in mixed solutions ofsurfactants and double-hydrophilic block copolymers. Advanced Materials, 2002, 14(4): 300-303.
  
  [131] Fan H J, G?sele U, Zacharias M. Formation of nanotubes and hollow nanoparticles based onKirkendall and diffusion processes: a review. small, 2007, 3(10): 1660-1671.
  
  [132] Zeng H C. Synthetic architecture of interior space for inorganic nanostructures. Journal of MaterialsChemistry, 2006, 16: 649-662.
  
  [133] Lou X W, Archer L A, Yang Z C. Hollow micro-/nanostructures: synthesis and applications.Advanced Materials, 2008, 20(21): 3987-4019.
  
  [134] Yu X L, Wang Y, Chan H L W, et al. Novel gas sensoring materials based on CuS hollow spheres.Microporous and Mesoporous Materials, 2009, 118: 423-426.
  
  [135] Basu M, Sinha A K, Pradhan M, et al. Evolution of hierarchical hexagonal stacked plates of CuSfrom liquid-liquid interface and its photocatalytic application for oxidative degradation of differentdyes under indoor lighting. Environmental Science & Technology, 2010, 44(16): 6313-6318.
  
  [136] Yuan K D, Wu J J, Liu M L, et al. Fabrication and microstructure of p-type transparent conductingCuS thin film and its application in dye-sensitized solar cell. Appllied Physics Letters, 2008,93(132106): 1-3.
  
  [137] Zhu H T, Wang J X, Wu D X. Fast synthesis, formation mechanism, and control of shell thickness ofCuS hollow spheres. Inorganic Chemistry, 2009, 48(15): 7099-7104.
  
  [138] Bai J, Jiang X E. A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxidecomposites for enhanced detecting of H2O2in biological environments. Analytical Chemistry, 2013,85(17): 8095-8101.
  
  [139] Hu J G, Li F H, Wang K K, et al. One-step synthesis of graphene-AuNPs by HMTA and theelectrocatalytical application for O2and H2O2. Talanta, 2012, 93: 345-349.
  
  [140] Meng F H, Yan X L, Liu J G, et al. Nanoporous gold as non-enzymatic sensor for hydrogen peroxide.Electrochimica Acta, 2011, 56(12): 4657-4662.
  
  [141] Liu S, Tian J Q, Wang L, et al. Stable aqueous dispersion of graphene nanosheets: noncovalentfunctionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticlesfor enzymeless hydrogen peroxide detection. Macromolecules, 2010, 43(23): 10078-10083.
  
  [142] Lu W B, Liao F, Luo Y L, et al. Hydrothermal synthesis of well-stable silver nanoparticles and theirapplication for enzymeless hydrogen peroxide detection. Electrochimica Acta, 2011, 56(5):2295-2298.
  
  [143] Niu X H, Zhao H L, Chen C, et al. Platinum nanoparticle-decorated carbon nanotube clusters onscreen-printed gold nanofilm electrode for enhanced electrocatalytic reduction of hydrogen peroxide.Electrochimica Acta, 2012, 65: 97-103.
  
  [144] Ye Y P, Kong T, Yu X F, et al. Enhanced nonenzymatic hydrogen peroxide sensing with reducedgraphene oxide/ferroferric oxide nanocomposites. Talanta, 2012, 89: 417-421.
  
  [145] Dutta A K, Das S, Samanta P K, et al. Non–enzymatic amperometric sensing of hydrogen peroxide ata CuS modified electrode for the determination of urine H2O2. Electrochimica Acta, 2014, 144:282-287.
  
  [146] Zhang L, Ni Y H, Wang X H, et al. Direct electrocatalytic oxidation of nitric oxide and reduction ofhydrogen peroxide based on α-Fe2O3nanoparticles-chitosan composite. Talanta, 2010, 82 (1):196-201.
  
  [147] Lei C X, Wang H, Shen G L, et al. Immobilization of enzymes on the nano-Au film modified glassycarbon electrode for the determination of hydrogen peroxide and glucose. Electroanalysis, 2004, 16(9):736-740.


  致谢
  

  时光荏苒,岁月如梭。在湘潭大学研究生学习即将结束了,回首三年前,我带着对知识的渴求踏入了三道拱门,成为了一名湘大学子,转眼间我们就要毕业了,三年的研究生学习使我成长了很多,学到了不少知识。
  
  值此论文完成之际,首先将最诚挚的敬意和由衷的谢意送给我的指导老师王穗萍副教授。从论文的选题、实验方案的拟定、实验数据的分析到论文的修改,无不凝聚着王老师的心血与汗水。近三年来,王老师不仅在学业上对我精心指导,同时还在思想、生活上给予我无微不至的关怀。王老师严谨的治学态度,渊博的专业知识,高尚的道德品格,精益求精的科研精神,使我获益匪浅,在此祝愿王老师及家人身体健康、工作顺利!
  
  特别感谢中南大学化学化工学院的阳明辉教授在学业与论文修改上给予的帮助!感谢彭任富师兄和李亚飞师弟在读研期间给予的帮助!还要感谢曾经在学业和生活中帮助过我的老师和同学!
  
  衷心地感谢一直关心与支持我学业的家人和亲友!你们的关爱永远是我前进的动力!特别感谢含辛茹苦抚养我长大的父母,在我漫长的求学路上,给予我精神上和物质上支持和鼓励。你们的爱使我克服重重困难,顺利完成学业。
  
  最后,向参加论文答辩、评阅和对论文提出宝贵意见的所有专家、学者表示最衷心的感谢!
返回本篇论文导航
相关内容推荐
相关标签:纳米材料论文
返回:化工论文